This paper gives the best overall description of SPPARKS and its algorithms and applications. Please cite this paper if you use SPPARKS in one of your papers:

Parallel simulation via SPPARKS of on-lattice kinetic and Metropolis Monte Carlo models for materials processing, John A Mitchell, Fadi Abdeljawad, Corbett Battaile, Cristina Garcia-Cardona, Elizabeth A Holm, Eric R Homer, Jon Madison, Theron M Rodgers, Aidan P Thompson, Veena Tikare, Ed Webb and Steven J Plimpton, Modelling and Simulation in Materials Science and Engineering, 31, 055001 (2023). (abstract), Open Access link, DOI: 10.1088/1361-651X/accc4b,

This technical report describes the original version of SPPARKS. As of May 2023, the MSMSE paper above supercedes this report.

Crossing the Mesoscale No-Man's Land via Parallel Kinetic Monte Carlo, S. Plimpton, C. Battaile, M. Chandross, L. Holm, A. Thompson, V. Tikare, G. Wagner, E. Webb, X. Zhou, C. Garcia Cardona, A. Slepoy, Sandia report SAND2009-6226, October 2009. (abstract)

You can download the entire report via this link, but note that it is a 45 Mb file!

This paper describes the most novel KMC or event-selection algorithm in SPPARKS, a constant-time composition-rejection algorithm, whose cost to select a single event is independent of the total number of available events:

A Constant-Time Kinetic Monte Carlo Algorithm for Simulation of Large Biochemical Reaction Networks, A. Slepoy, A. P. Thompson, S. J. Plimpton, J Chem Phys, 128, 205101 (2008). (abstract)

These are papers that used SPPARKS to perform simulations. If you send us information about such a paper, we'll be pleased to add info about it to this page. Ditto for a picture or movie for the Pictures & Movies page. Several of the papers below have pictures on that page.

A Bézier curve fit to melt pool geometry for modeling additive manufacturing microstructures, Jeremy E Trageser, John A Mitchell, Kyle L Johnson, Theron M Rodgers, Computer Methods in Applied Mechanics and Engineering, 415, 116208 (2023). (abstract), Open access link, DOI: 10.1016/j.cma.2023.116208

A novel physics-regularized interpretable machine learning model for grain growth, W. Yan, J. Melville, V. Yadav, K. Everett, L. Yang, M. S. Kesler, A. R. Krause, M. R. Tonks, J. B. Harley. Materials & Design, 111032 (2022). (abstract), Open">https://www.sciencedirect.com/science/article/pii/S0264127522006542 Access link

Modeling analysis of the effect of laser transverse speed on grain morphology during directed energy deposition process, W. Li and M. Soshi, Intl J of Advanced Manufacturing Technology, 103, 3279-3291 (2019). (abstract)

Modeling analysis of grain morphologies in Directed energy deposition (DED) coating with different laser scanning patterns, W. Li and M. Soshi, Materials Letters, 251, 8-12 (2019). (abstract)

A Monte Carlo model for 3D grain evolution during welding, T. M. Rodgers, J. A. Mitchell, and V. Tikare, Modelling and Simulation in Materials Science and Engineering, 25, 064006 (2017), (abstract)

Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo, T. M. Rodgers, J. D. Madison, V. Tikare, Computational Materials Science 135, 78–89 (2017). (abstract)

Process-Structure Linkages Using a Data Science Approach: Application to Simulated Additive Manufacturing Data, E. Popova, T. M. Rodgers, X. Gong, A, Cecen, J. D. Madison, and S. R. Kalidindi, Integrating Matererials and Manufacturing Innovation, 6, 54–68 (2017). (abstract)

Modeling of additive manufacturing processes for metals: Challenges and opportunities, M. M. Francois, A. Sun, W. E. King, N. J. Henson, D. Tourret, C. A. Bronkhorst, N. N. Carlson, C. K. Newman, T. Haut, J. Bakosi, J. W. Gibbs, V. Livescu, S. A. Vander Wiel, A. J. Clarke, M. W. Schraad, T. Blacker, H. Lim, T. Rodgers, S. Owen, F. Abdeljawad, J. Madison, A. T. Anderson, J-L. Fattebert, R. M. Ferencz, N. E. Hodge, S. A. Khairallah, and O. Walton, Current Opinion in Solid State and Materials Science, 21, 198–206 (2017). (abstract)

Empirical force field-based kinetic Monte Carlo simulation of precipitate evolution and growth in Al–Cu alloys, K. Joshi and S. Chaudhuri, Modelling and Simulation in Materials Science and Engineering, 24, 075012 (2016). (abstract)

Predicting Mesoscale Microstructural Evolution in Electron Beam Welding, T. M. Rodgers, J. D. Madison, V. Tikare, and M. C. Maguire, of the Minerals, Metals & Materials Society (JOM), 68, 1419-1426 (2016). (abstract)

Hybrid Potts-phase field model for coupled microstructural-compositional evolution, E. R. Homer, V. Tikare, E. A. Holm, Computaional Materials Science, 69, 414-423 (2013). (abstract)

Multiple Proton Diffusion and Film Densification in Atomic Layer Deposition Modeled by Density Functional Theory, M. Shirazi and S. D. Elliott, Chemistry of Materials, 25, 878-889 (2013). (abstract)

A hybrid simulation methodology for modeling dynamic recrystallization in UO2 LWR nuclear fuels, J. D. Madison, V.Tikare, E. A. Holm, Journal of Nuclear Materials 425, 173–180 (2012). (abstract)

Parallel Simulation of 3D Sintering, C. G. Cardona, V. Tikare, S. J. Plimpton, Int J Computational Materials Science and Surface Engineering, 4, 37-54 (2011). (abstract)

Three-Dimensional Simulation of Grain Growth of in a Thermal Gradient with Non-Uniform Grain Boundary Mobility, A. L. Garcia, V. Tikare and E. A. Holm, Scripta Materialia 59, 661-664 (2008). (abstract)