Potts model contextΒΆ
Digitize space (lattice)
Potts algorithm seeks to minimize the total energy
Total grain boundary energy: \(E\)
\[\begin{split}E=\sum_i^N \; \sum_j^nJ(1-\delta_{ij}) \\\end{split}\]\(N\) – number of sites; \(n\) – number of neighboring sites; \(J\) – bond energy
Local energy consideration: \(\Delta E=-2,\;\; r=1.0\) (see below)
Rates \(r\) computed to mimic atomic processes – Boltzmann distribution
\[\begin{split}r=\begin{cases} 1 & \Delta E\leq 0\\ e^{-\frac{\Delta E}{kT}} & \Delta E > 0 \end{cases}\end{split}\]- Events that decrease energy have higher rates