SPPARKS Users Manual

27 Nov 2024 version

https://spparks.github.io - Sandia National Laboratories
Copyright (2008) Sandia Corporation. This software and manual is distributed under the GNU General Public License.

SPPARKS Users Manual

Table of Contents

SPPARKS DOCUMENEALION.....c..eeveeutitiiieiieienienitetente sttt ettt ettt et et sttt et st sbeesaenaesbeeseeaenbeeseennenaenaes 1
27 NOV 2024 VEISION. . ..eutirieriietinieniteitenteete ettt ettt ettt ebtete bt bt esse st ebeessentesbeeat et enbesbeestenbesbeeneensensene 1
VETSION 0.ttt ettt et et sa ettt st ettt s be et ettt nenaenaes 1

L INEEOAUCHION. ...ttt sttt ettt st e b e bt e et ettt ebe et e b s beebee s e b e 3
1.1 What is SPPARKS ..ottt et st nae e 3

1.2 SPPARKS FRALUTESetiiiieiiiiiniieit ettt sttt et st bt e b i 4
Pre- and POSt-PrOCESSINZ . .. eeuuieuiieieiit ettt ettt ettt ettt ettt b e bt e bt e bt e bt e bt e bt ebeenbeebeeeeenee 4

1.3 Open SOUICE diStITDULION.eetieiieieeie ettt ettt ettt ettt ettt ettt e et eateeaeeeaees 5

1.4 Acknowledgments and CIEAtIONS.cccueeuietierieeie ettt ettt ettt ettt et ettt et e eabeebeeaseeaees 5

2. GOLINE STATEEA. ...ttt ettt ettt ettt e et e et e ateeateeateeabeeabeemteemteenteenbeentesabeennes 6
2.1 What's in the SPPARKS diStriDUON....c..eeveiiiniirieiiienieicicscetctcicse et 6

2.2 Making SPPARKS ...ttt ettt 6

2.3 Making SPPARKS with optional packages.........ccceeuirieiiiiiiiiieie et 10

2.4 Building SPPARKS a5 @ IIDIary.......cocuiiiiiiiiiiee et 12

2.5 Running SPPARKS ...ttt sttt s 13

2.6 ComMmMANA-TINE OPLIONSeeeuiiiuiiiiiieiie ettt ettt ettt et e st ettt st e st e satesatesateeseesanesaeesneeeas 14

2.7 SPPARKS SCTEEN OULPUL.....eeeuiiiiiiieniiieiiiteeite ettt ettt ettt ettt st e st e st e sabeeenbeeenaees 15

3 COMIMANGS ...ttt et ettt st st s e st e e st e s e sanesanesaeesanesaeesanesane e 17
3.1 SPPARKS T0PUL SCIIPL cuttutteiiteiieeite ettt ettt ettt sttt ettt sttt esate st e satesseesiaesanesneeeas 17

3.2 ParSING TUIBS ...ttt ettt ettt et et e ettt et e sate e et e eateeaeeestesanesaaesneeeas 18

3.3 TNPUL SCTIPE SEIUCTUTR.eueeeeeute ettt ettt et et ettt ettt et eateeateeateeateeatesatesaeesateeaeesaeessaesanesanesneeaas 18

3.4 Commands liSted DY CAtEZOTY......couerueeruiriiriiriiiiinieeitetertt ettt sttt ettt sb e st be e 19

3.5 Individual COMMANGS.....c..eruiriiriiriiiiitene ettt ettt sttt sttt b e sbe bbb e ene 19

4. HOW-LO QISCUSSIONS 1..c.vteutiteeieiutitietteitetentee et steste et ste s bt ebe et st sbeeseenae s bt eat et e saesbe et enbesbeeaeemtenbesueenee 21
4.1 Running multiple simulations from ONe iNPUL SCTIPL.........eeruerriirriieriieieeieeie e 21

4.2 Coupling SPPARKS t0 Other COAES.......couiiiiiiiiiiiiieiiet et 22

4.3 Library interface to SPPARKS..........ooi e 23

5. EXaMPIE PIODICINS......couiiiiiiiiii ettt ettt et ettt ettt et et enbeenbeentean 25
6. Performance & SCalability.........ccciiiiiiiiiiiie ittt e 26
7. AddIIONAL TOOIS...c.ueviiiiiiiitieiietee ettt bttt ettt sttt st 27
8. Modifying & extending SPPARKSooi e 28
APPLCALION SEYIES.c..eeuiiiirtieititiiteetetere ettt sttt ettt b ettt st saeeaeens 29
DIAZNOSHIC SEYLES...c.ueeuiiiirieeititirieetetete ettt ettt sttt b e sbe bbbt ebe b sbesbe et entesaeeneens 29
INPUL SCIIPE COMIMANAS ...ttt ettt ettt ettt et et e ate e bt eabeenbeenbeenaeeneean 30
SOIVE STYLES. .ttt ettt et sab e st s et et e bt e s bt e shb e s et e sbeeebaeeaees 30

O EITOTS. ...ttt ettt et ettt et et et et et ettt et en 31
9.1 COMMON PIODIEINIS ..c..eeiiiiiiieiieitinie ettt ettt et sttt et be e a e bt e e e e sbesbeenentesaeeaeens 31

0.2 REPOTTING DUZS....cuvitiiieiiiiinieeitetenie ettt sttt et sttt sb et b e eae b e sbesbe et entesaeeneens 32

9.3 EITOr & WarNiNg MESSAZES .. .cveeurererreerrentinteeirententesteestentesiesseesensesseesaensenseeseesessessesssensessesseens 32
EITOTS et ettt ettt ettt ettt et ettt 32
VTS ettt et ettt et et e e bt et e e bt e bt e bt en bt e bt e bt e bt e bt e bt e bt e bt e bt ebeens 42

44

SPPARKS DOCUMENTATION.c.uviiiiiiiieieiiiee ettt e eeite e e ettt eeete e e e eetae e e eetteeeeeetaeeeeetaeeseeaseeeeeassseeeesseeeessseaeanes 44
27 INOV 2024 VETSION......uiiiiiiuiieeeeitiieeeeteeeeeitteeeeitteeeeetteeeeeeteeeeeeaseeeeesseseesseseeassseseasssseenssseeeansseseansseeeans 44
VETSION INEO . .ottt e e e e et e e e e et e e e ettee e eeateeeeeateeeeeaaeeeenaseeeeeareeas 44

3. COMIMANGASeeeeitiie et e ettt e ettt e ettt e e ettt e e ettt e e e eetteeeeeaeeeeeaseeeeeasseseensseseeassseeeansseseessseseansseseasseeeaas 46
3.1 SPPARKS T0PUL SCIIPL . utteutteuiieiiteiie ettt ettt ettt ettt et ettt st st e eate st e sateeneesaaesanesneeeas 46

3.2 ParSING TUIBS ...ttt ettt ettt et et e e et e at e st e satesateeateeaeeeseesanesaaesaeeeas 47

SPPARKS Users Manual

Table of Contents

3.3 TNPUL SCTIPE SEITUCTUTR. ... ueeeteite ettt ettt et ettt ettt et esatesateeateeateeatesatesaeesaeesaeeeaeeesaesanesaeesneenas 47
3.4 Commands [iStEd DY CAtBZOTY......ueiuuiiuiiiiieiieiie ettt ettt ettt ettt sttt s saae e 48
3.5 Individual COMMANGS.....c..erueeiiriirierietere ettt ettt ettt sbesbe et be e ene 48
O EITOTS. ..ttt ettt ettt ettt et et et ettt ettt e en 50
9.1 COMMON PIODIEINIS ...c..eviiuiiiieiieiente ettt ettt st ettt ebe et sb e ebe e sbesbee s entesaeeaeens 50
0.2 REPOTTING DUZS....uviiiiieiiiiiitieitetente ettt ettt sttt et sbe ettt ebe e s e sbesbeetentesaeeneens 51
9.3 EITOr & WarNiNg MESSAZES .. .eveeurererreerrentinteeitententesteestentesteeseesensesseessensenseessensessessessensessesseens 51
EITOTS ettt ettt ettt et bbbt bttt b e eb et nh et tesheebeens 51
VTS ettt ettt et et e et e et e e bt en bt et e e bt e bt e bt e bt e bt e bt e bt e bt e bt e beenns 61
5. EXaMPIE PIODICINS......couiiiiiieiiiiieee ettt et ettt ettt ettt et et enbeeneeentean 62
TO. FULUT® PLANS. ...ttt ettt ettt ettt e e it e sat e eabeeateeatesatesatesnaeenneeas 63
4. HOW-L0 QISCUSSIONS 1..c.vteutiteeiteititieteettententee it ete st st et s bt ebeeste st sbeestesae s bt eat et e naesbe et enbesbeeaeemtenbesueenee 64
4.1 Running multiple simulations from ONe iNPUL SCTIPL.........ceruerriirriieriieriieieeie e 64
4.2 Coupling SPPARKS t0 Other COAES.......couiiiiiiiiiiiiieiiee ettt 65
4.3 Library interface to SPPARKS. ... 66
L INEEOAUCHION. ...ttt ettt st be ettt e be e sa e bt et et enbeebe et enbesbeene 68
1.1 What is SPPARKS ...ttt st ettt s 68
1.2 SPPARKS fRALUTES ...c.veteeiietiiieiieiertenieetee sttt ettt sttt ettt et naeeaeens 69
Pre- and POSt-PrOCESSINZ: ..cc.viruiriiriietintieitetentintt ettt ettt ettt sttt st ebeeaesbesbeesentesaeeneens 69
1.3 Open SOUICE diStITDULION.eeuieuiieiiiiie ettt ettt ettt ettt e et st eatesaeeeaaesaee e 70
1.4 Acknowledgments and CItAtIONS........ccueeuiriieiieie ettt ettt et sttt sitesaee s e 70
8. Modifying & extending SPPARKSoo e 71
APPLICALION SEYLES ...t eutieui ettt ettt ettt ettt et et et e b e et e be e be et ete et s 72
DIAGNOSTIC SEYLES.....eieuiieii ettt ettt ettt et ettt et e b e et e bt e be et ebe et s 72
INPUL SCIIPE COMIMANGS ...ttt ettt ettt ettt et ettt e ee e bt ebeenbeembeenseeneean 73
SOIVE STYLES. .ttt ettt ettt et sttt e sttt e sbt e sht e shb e sabeesbeeebaeeaees 73
6. Performance & SCalability.........cooiiiiiiiiiiiii ettt 74
9. Python interface to SPPARKS..........ciii ettt 75
9.1 Building SPPARKS as a shared Ibrary...........cccccoeveeeienininienininiciciceececnesceenie e 76
9.2 Installing the Python wrapper into Python............coceciiiiiiiiininiiiiiicece e 76
9.3 Extending Python with MPI to run in parallel..........cccccocoririienininiinininieeencneeeene e 77
9.4 Testing the Python-SPPARKS interface..........cccooeveeiiiniiiiieniniiicicinccecesesceeie e 78
9.5 Using SPPARKS from Python.....c..cocoeoiiiiniiiiiiniicicincctcc e 80
9.6 Example Python scripts that use SPPARKS........c..cocoiiiiiiiiiicccceece e 81
2. GOEING STATEEA ...ttt ettt ettt ettt e et e s et e e a e e e ateeabesabesateeatesatesaeeestesaeesaeeans 82
2.1 What's in the SPPARKS diStriDUON....c.coueiiiiiiniiiieiciirieetcerceee e 82
2.2 Making SPPARKS ...ttt sttt bbb 82
2.3 Making SPPARKS with optional packages.........coceeuiriiriiiiiiiieie et 86
2.4 Building SPPARKS @S @ IIDIary.......coouiiiiiiiiieeeec et 88
2.5 Running SPPARKSoo ettt st 89
2.6 Command-1INE OPLIONScoueeiiriiriirieiente ettt ettt ettt et sb et e e sbesbeebeebesbeeaeenee 90
2.7 SPPARKS SCIEEN OULPUL.......coutiuiiiiiiiiiieiieeteeee ettt st 91
7. AddIIONAL TOOIS...c..eueiiiiiiitieiieteeete ettt sttt ettt st s 93
add_reaction COMIMIANG.........uuveveiiieiiiiieiee ettt e aesasaaaeaaasassasssesseseeeeaeeees 94
add_SPECIES COMMEANT........oiuiiiiiiiiieii ettt ettt ettt e sat e st e et e satesatesatesaaesaeesaeeeas 95
am build COMMEANT.ocuiiiiiiiiiiicc ettt et sttt et sa e eanen 96
am cartesian_layer COMMANG.........cc.iiiiiiiiieiie ettt ettt ettt st st e st e st e st e siaesaeesaeeeas 98
QM PASS COMIMEAN. ...ttt ettt ettt ettt et e e bt et e e bt e bt e bt et e e bt e bt eabe e bt ebeebeenbeesbeenbeanseenns 100

SPPARKS Users Manual

Table of Contents

AM PAth COMMEANT.....co.uiiiiiii ettt et e bt e bt e bt et e e bt e s beesbeesbeeneeenas 102
am path_layer COMMANG.cooouiiiiiiiii ettt ettt sbaeesabeesabee s 104
M PAthZEN COMIMANTceutiiiiiiiiiiiiiie ettt ettt e b b e b bt e sbbeesabeesabeesabeeenbaeenbaeesabeesabeens 106
app_style am/ellipsoid COMMAN..........coouiiiiiiiiiiieiiee ettt ettt s e e 108
app_style chemistry COMMAN...........ooeiiuiiiiiiiiiee ettt ettt e st e e e 111
app_style diffusion COMMANd...........cooiiiiiiiii ettt ettt e s e 112
app_style diffusion/multiphase command..............ccooriiiiiiiiiiinieeee e 115
app_style erbitm COMMANC..........coouiiiiiiiiie ettt ettt et e st esbeesbee e as 117
apP_style 1SING COMMEANC.cc.eiiiiriiiiniet ettt ettt ettt et sa et neseesaeeaeens 119
app_style iSing/single COMMANA..........cceririeriiriiieieerre ettt st eaeens 119
app_style membrane COMMEANG..........cc.eeiuiiiieiiieiieiiet ettt ettt et et et e bt e sbeesaeesbeenaeeaes 121
app_style phasefield/potts COMMAN............coiiiiiiiiiiiiiieeee e 123
APP_SLYLe POLLS COMMEAN.eiuiiiiiiiieiieieete ettt ettt ettt et e bt e bt e b e bt e bt e sbeesbeesbeenseenas 125
app_style potts/Neigh COMMANC.........ccueiiiiiiiiiieieee ettt sb et e st e s e e as 125
app_style potts/neighonly COMMAN..........coeeiuiiiiiiiiiiieieeee ettt 125
app_style potts/am/bezier COMMANG.........ccoueeiuiiriieiieiieeeteeie ettt ettt ettt sb e bt et e seeesbeeseeees 127
app_style potts/am/path/gen COMMANG.cocueeiiieiiiiriiiieeee ettt ettt 132
app_style potts/am/weld COMMAN.........c.coiiiiiiiiiiieee ettt 134
app_style potts/grad COMMANC..........coouiiiiiiiieiieieeee ettt ettt et et e bt e bt et esbe e b e e eaes 136
app_style potts/Pin COMMEAN........cccuiiiiiiiiieete ettt ettt ettt et e et e bt e b et e bt e sbeesbeesbeenaeeaes 138
app_style potts/quaternion COMMEAN............eeiuierteertiertietienteerte et eert et e bt e bt e bt esbeesbeesbeesbeesbeesbeenaeenaes 140
app_style potts/Strain COMMANC.........ccutiruieiieeiieiieeet ettt ettt et e st e bt et e bt e bt e sbeesaeesbeeneeeas 142
app_style potts/strain/pin COMMANC..........eoiuieitieriieiiietie ettt ettt et et e bt e sbee st esbeesbeesbeesbeesaeeaes 144
app_style potts/weld COMMANG.........ooouiiiiiiieieee ettt ettt et sb et e st e sbee b e e eas 145
app_style potts/weld/Jom COMMANC..........coiuiiiiiiieiieieeee ettt e s e 148
app_style relax COMMANT........c.eoiuiiiiiiieeee ettt et e bttt e b e beesbeesbeesbeenbeeais 150
ApP_Style SINLEr COMMEAN.........eiitiiiieiietiete ettt ettt et e bt e bt e b e bt e bt e sbeesbeesbeenseeaes 151
APP_SLYLE SOS COMIMANA........eiiiiiiiiiii ettt ettt ettt b ettt e bt e bt e bt e bt e beesbeesbeenseenns 154
APP_SEYLE COMMEANT........iiiiiiiiiii ettt et e bt e bt e bt et e e bt e sbeesbeesbee st enes 156
app_style test/Zroup COMMANC..........coiuiiiiiiieeiieie ettt ettt et e st e bt e bt et e bt e sbeesbeesbeeneeenas 158
DAITIET COMMAN.......oouiiiiiiiitiitiet ettt ettt ettt sttt b e et eb e bt sbe et enaesae bt enenbesaeenee 160
DOUNAArY COMMIANC. ...ttt ettt ettt ettt ettt e s ate et e sateeateeaeeenaesaneeas 162
ClEAT COMIMANG.......eiitiiiiiiiitiett ettt ettt ettt b e e bt ettt et ea et s bt bt et e bt sbe e st et e s bt ebeenbenaeeaeeanen 163
COUNE COMIMAN.....c..eterieeititietteitet ettt et st ettt et sh e bt eatesbesbeest et e ebeesb et e saeebeemte bt sbeesaenbenbeebeenbenseaueennen 164
CTEALE_DOX COMUMANI ..ottt e e e e e e e e et e e e e e e e e e e e e e e e ae e e e e e e e eeeaeaaas 165
CTEALE_SIES COMIMEANT ..ot e aeeeeeeeeeeaaeaans 166
deep_length COMMANC..........cooiiiiiiiiiii ettt ettt st e b e e 171
deep_width COMMAN.cccuiiiiiiiiiii ettt e bt e bt e bt e sbeesaeesaeenaeees 172
depOSItION COMMEANM.couiiiiiiiiiiiieiie ettt ettt ettt e sbteshtesbtesaeesbeesbeesbeesbeesaeesaeenneeas 173
diag_style array COMMANG.........coouiiiiiiiiie ettt et e sae e bt e bt e bt e sbeesaeesbeesaeeeis 175
diag_style ClUSter COMMAN...........couiiiiiiiiie ettt ettt st e bt e bt e e e as 176
diag_style diffusion COMMANA...........oooiiiiiiiiiiie ettt st 178
diag_style energy COMMEANG........cccoirierieriririeneneetetene ettt ettt sttt sbe et bt e sae e eanen 179
diag_style erbium command.............ooouiiiiiiiiiiie e e 180
diag_style propensity COMMAN............ueiiiiieiiiiieiie ettt sttt e st sb e bt e sbeesaeesaeeneeeas 181
diag_style sinter_avg_neck_area COmMMAN...........cccueiiiiiiiiiniinieriesie et 182
diag_style sinter_density COMMANG...........ceuiriiiiiiiiiie ittt sttt st seee et e e seeeas 183
diag_style sinter_free_energy_pore COMMANd..........couerierierienienieniiesitesiiesieesieesieesieesieesaeesaeeseeeees 184

SPPARKS Users Manual

Table of Contents

diag_style sinter_pore_curvature COMMANG..........ccuirierierierienieniesitesitesieesteesieeseeesteesieesaeesaeeseeenaes 185
diag_Style COMMANG......c.c.oiiiiiiiiieie ettt sttt sat e bt e bt e sbeesbeesaee bt e et eas 186
diffusion/multiphase COMMANA..........cccoiiiiiiiii et 188
AIMENSION COMIMEANT.......cciiiiiiieiiiie ettt ie e e eeeeee e e e e e e e e et e e e e eeaaeeeeeeeeeeaaaeeeeeesssaaaaeeeeesseensaaeeeeesenans 190
AUMP COMIMEANT. ..ottt ettt ettt et et ettt ebt ettt ebe et et sbe e st ebesbeebeenaenaeeaeennen 191
dump IMage COMMEANA......cc.eotiiiriiriiiieterereet ettt ettt ettt et ettt sb et e b sbeeseebesbeebeenaenaeeaeennen 191
dump iIMage COMMEANA......cc.cotetiriiriiieiente ettt ettt ettt et ettt eb et et sbeeseenbesbeebeenaenaeeaeennen 196
dump_modify COMMANG........ccciiiiiiiiiiiie ettt sttt e bt e b e sae e bt e naeeais 202
dUMP_ONE COMIMANG.euiieiiieiiieiie ettt ettt et e et e sate s b eesbtesheesbeesbeesbeesbeesbeesaeesaeesaeenneennes 210
€CHO COMMEANU. ...ttt e et e e e e e e e e e e s e et aeeeeesseenaaaeeeeeeenns 211
€COOTA COMIMEANT......euvviiiiiiiiiiiiee et e e e ettt e e e e ettt e eeeeeee e eeeeeeeeaaaeeeeeeseessataeeeeesseensaaneeeesenans 212
ellipsoid_depth COMMANA..........cooiiiiiiii ettt st 213
LTS LA T0) 001 04 T2 1 (o HU PP PRRRRN 214
EVENL_TAIOS COMMUANI ...ttt e e e e e e e et e aeeeeeeeeeenaeaaas 216
event_temperatures COMIMANCL.eiruuiertieriieiiie ettt ettt ettt et eebeeesabeesbbeesateesabeesabeeebeeenanes 217
FE 10} 1010 0F21 1 o KRR 218
F10 T 1016 (Sl T0) 001 0 F:1 1 Lo FUU PR PRRRRN 219
INCIUSION COMIMEANT.....uiiiiiiiiiiiiiiiee e e e et e e e e e e e e e e e e et e e e e eesseaataeeeeessesnseaeeeeesenans 220
JUIMP COMIMANT. ..ttt t et e s a e sh e e shtesh e e ebee s bt e eb e e sbeesheeebeesheesbeeabeesbeesbeesaeesneenaeenns 221
JaDE] COMIMANG.......cceveiiiiiiieeeeee e e ettt e e e et e e e e e e et eeeeessenataeeeeesseenaaaeeeeesenns 222
JattiCE COMIMANG.vvvviiiiiiiiiiieeeee et e e e ettt e e e e et e e e e e e et eeeeeeeeeaaaeeeeeessenaaaeeeeessennsaaeeeeesenans 223
LOZ COMMIEAN....cuetiiiiieiiie et ettt sttt ettt et e sbteesbbeesateesateesabeeebeeenanes 225
JIT) AR e10) 101 0F21 3 ¢ FE O PRRRRN 226
PAIT_COCTE COMIMAN.......eiiiiiiiiiie ettt ettt ettt st st e st e et eeateeaaeeaeeeas 228
PAIT_StYle 1] COMMANG.couiiiiiiii ittt ettt et sttt eeaae e eas 230
PAIT_SEYIE COMIMANG. ...ttt ettt et ettt ettt et e s ate et eeateeateeaeesatesaneeas 232
PIN COMIMAN. ...ttt et ettt ettt e et e eateeatesateeateeseeeaeeeabesateeabeeabeemneeneesneesaneens 233
POtts/am/beZIer COMMEANA.......ccuiiiiiiiiiieiie ettt ettt ettt ettt e et e e eateeaeesaeeeas 234
PIINE COMMEAN. ...ttt ettt ettt et eat e eatesateeateeseeeaeeeatesateeabeeateemeeeneesaeesaneans 235
PTOCESSOIS COMIMANT.euttiite et ettt ettt ettt ettt et et e e et e et e sateeabesateeateeeeeeseeeabesabeeabeemteemeeeneesnsesaneaas 236
PULSE COMIMANG ...ttt ettt ettt ettt e et e et e e et e e st e eabesabeeabesateemeeeneesneesaneeas 237
TEAA__SILES COMUMANT. ...ttt eenesaaaaaaaees 238
TEZION COMIMANG. ...ttt ettt ettt ettt ettt et et e et e e ateeateeateeateeateeaeeeaeeeaeeeabesabeeabeembeemeeeneesneesaneans 242
TESEL_LIME COMUMANTottt e e e e e e e e et e e e e e e e e e e e e e aaeeeeeeeeeneaaaaaaaaaaes 244
TUDN COMIMEANTL ..etiiiiiiiiiiiieee ettt ee ettt e e e e e et e e e e e e eaaaeeeeeeeeensaaeeeeeeeseassaaaeeeeesssansaeeeeeeseeasseereeeas 245
SECLOT COMIMANTvvvviiiiiiiiiiteeeee ettt ee e e e ee ettt e e e e e eea et e e e eeseesaaaeeeeeeseaasaseeeeeeeeassesseeeessasnsenseeeessanneees 247
SEEA COMIMANG.......uvvviiiiiiiiiiiieeeee ettt e e e e et e e e e e e e e e e e e e eeeaaaeeeeeeseassaaaeeeeseeesaaeeeeesessasnsesseeeessannneees 249
SEL COMIMANT.......coiueiiiieie it e oottt e e e e ettt e e e e e e e e e e e e e s eeeaaaeeeeeeseassaaaeeeeseeaasseeseeeessasasesseeeessanneees 250
SHEIL COMMEANG......oviiiiiiiiieeeeee et e e e ettt e e e e e e et e e e e e e e esaaaaeeeeessesseaseeeessennanes 253
APP_SEYLE COMMEANT.......iiiiiiiiiii ettt ettt ettt e bt e b e bt e bt e sbeesbeesbeenaeennis 255
APP_SEYLE COMMEANT........iiuiiiiiii ettt et e et e bt e bt e b et e bt e sbeesbeesbeenseenns 256
SOIVE_StYle COMMAN........eiiiiiieiieii ettt et et e bt e bt e b e nbeesbeesbeesbeenaeenas 257
APP_SLYLE COMMANG.......otiiiiiiiiiiiitietctee ettt sttt sttt et besbe s et e naesaeeaeens 259
STALS COMIMANG.uvvvviiiiiiiiiteeeeee e ettt e e ee ettt e e e e e eea e e e e eeseeeataeeeeeeseassaaaeeeeeeeesssasseeeessasasesseeeessannnenes 260
SWEEP COMIMAN....c..eeutteutieute et et ettt et et e bt e bt e bt et e e bt et e e bt eabe e bt e bt e bt enbeeabeebeenbeenbeenbeesseenbeenseenns 262
tEMPETAtUIe COMIMANT. ... eeiutiiiiiiiiie ettt ettt ettt ettt e sttt e st e et e ettt ebeeesbbeesbbeesabeesabeesabeeebeeenanes 264
time_SINEr_StATt COMUIMANT.ceeeeeeeeeeee e e e e e e e e e e e et e e e e e e e e e e e e eeae e e e e e e e eenaeaans 265
UNAUMP COMMAN. ...ttt ettt et e et e st e s bt e s b eesb e e sheesheeeaeesbeesbeesbeesaeesaeesseenneenns 266

SPPARKS Users Manual

Table of Contents

Variable COMIMANG..........oooiiiiiiiiiiiie ettt e e e et e e e e e e et e e e e e e s eeaaaeeeeessennsaaeeeeesenns 267
VOIUIME COMIMANG.coiiiiiieieiec e e e e e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeseaesesssnsnnssssnnes 271
weld_shape_ellipse COMMANA............ooiiiiiiiiiiie ettt st 272
weld_shape_teardrop COMMEANA.........couiiiiiiiiiiiieete ettt sttt st e st e st e e as 273

SPPARKS Documentation
27 Nov 2024 version
Version info:

The SPPARKS "version" is the date when it was released, such as 12 Jun 2018. SPPARKS is updated
continuously. Whenever we fix a bug or add a feature, we release it immediately, and post a notice on this page of
the WWW site. Each dated copy of SPPARKS contains all the features and bug-fixes up to and including that
version date. The version date is printed to the screen and logfile every time you run SPPARKS. It is also in the
file src/version.h and in the SPPARKS directory name created when you unpack a tarball.

¢ If you browse the HTML or PDF doc pages on the SPPARKS WWW site, they always describe the most
current version of SPPARKS.
¢ If you browse the HTML or PDF doc pages included in your tarball, they describe the version you have.

SPPARKS stands for Stochastic Parallel PARticle Kinetic Simulator.

SPPARKS is a kinetic Monte Carlo (KMC) code designed to run efficiently on parallel computers using both
KMC and Metropolis Monte Carlo algorithms. It was developed at Sandia National Laboratories, a US
Department of Energy facility, with funding from the DOE. It is an open-source code, distributed freely under the
terms of the GNU Public License (GPL), or sometimes by request under the terms of the GNU Lesser General
Public License (LGPL).

The SPPARKS website has more information about the code and publications that desribe it. The current
SPPARKS developers are John Mitchell (Sandia National Labs) and Steve Plimpton. They can be contacted at
jamitch@sandia.gov and sjplimp@gmail.com respectively. Past developers and other significant code
contributores are listed on the Authors page of the website.

The SPPARKS documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to the developers so we can
improve the SPPARKS documentation.

Once you are familiar with SPPARKS, you may want to bookmark this page at Section_commands.html#comm
since it gives quick access to documentation for all SPPARKS commands.

PDF file of the entire manual, generated by htmldoc

1. Introduction
1.1 What is SPPARKS
1.2 SPPARKS features
1.3 Open source distribution
1.4 Acknowledgments and citations
2. Getting started
2.1 What's in the SPPARKS distribution
2.2 Making SPPARKS
2.3 Making SPPARKS with optional packages
2.4 Building SPPARKS as a library
2.5 Running SPPARKS
2.6 Command-line options
2.7 SPPARKS screen output
3. Commands

https://spparks.github.io/bug.html
https://spparks.github.io/bug.html
https://spparks.github.io
https://sjplimp.github.io
https://spparks.github.io/authors.html
http://freecode.com/projects/htmldoc

3.1 SPPARKS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically
4. How-to discussions
4.1 Running multiple simulations from one input script
4.2 Coupling SPPARKS to other codes
4.3 Library interface to SPPARKS
. Example problems
. Performance & scalability
. Additional tools
. Modifying & Extending SPPARKS
. Python interface
9.1 Building SPPARKS as a shared library
9.2 Installing the Python wrapper into Python
9.3 Extending Python with MPI to run in parallel
9.4 Testing the Python-SPPARKS interface
9.5 Using SPPARKS from Python
9.6 Example Python scripts that use SPPARKS
10. Errors
10.1 Common problems
10.2 Reporting bugs
10.3 Error & warning messages
11. Future plans

O 0 3 O\ D

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

1. Introduction

These sections provide an overview of what SPPARKS can do, describe what it means for SPPARKS to be an
open-source code, and acknowledge the funding and people who have contributed to SPPARKS.

1.1 What is SPPARKS

1.2 SPPARKS features

1.3 Open source distribution

1.4 Acknowledgments and citations

1.1 What is SPPARKS

SPPARKS is a Monte Carlo code that has algorithms for kinetic Monte Carlo (KMC), rejection KMC (rKMC),
and Metropolis Monte Carlo (MMC). On-lattice and off-lattice applications with spatial sites on which "events"
occur can be simulated in parallel.

KMC is also called true KMC or rejection-free KMC. rKMC is also called null-event MC. In a generic sense the
code's KMC and rKMC solvers catalog a list of events, each with an associated probability, choose a single event
to perform, and advance time by the correct amount. Events may be chosen individually at random, or a sweep of
enumarated sites can be performed to select possible events in a more ordered fashion.

Note that rKMC is different from Metropolis MC, which is sometimes called thermodynamic-equilibrium MC or
barrier-free MC, in that rKMC still uses rates to define events, often associated with the rate for the system to
cross some energy barrier. Thus both KMC and rKMC track the dynamic evolution of a system in a time-accurate
manner as events are performed. Metropolis MC is typically used to sample states from a system in equilibrium or
to drive a system to equilibrium (energy minimization). It does this be performing (possibly) non-physical events.
As such it has no requirement to sample events with the correct relative probabilities or to limit itself to physical
events (e.g. it can change an atom to a new species). Because of this it also does not evolve the system in a
time-accurate manner; in general there is no "time" associated with Metropolis MC events.

Applications are implemented in SPPARKS which define events and their probabilities and acceptance/rejection
criteria. They are coupled to solvers or sweepers to perform KMC or rKMC simulations. The KMC or rKMC
options for an application in SPPARKS can be written to define rates based on energy differences between the
initial and final state of an event and a Metropolis-style accept/reject criterion based on the Boltzmann factor
SPPARKS will then perform a Metropolis-style Monte Carlo simulation.

In parallel, a geometric partitioning of the simulation domain is performed. Sub-partitioning of processor domains
into colors or quadrants (2d) and octants (3d) is done to enable multiple events to be performed on multiple
processors simultaneously. Communication of boundary information is performed as needed.

Parallelism can also be invoked to perform multiple runs on a collection of processors, for statistical puposes.

SPPARKS is designed to be easy to modify and extend. For example, new solvers and sweeping rules can be
added, as can new applications. Applications can define new commands which are read from the input script.

SPPARKS is written in C++. It runs on single-processor desktop or laptop machines, but for some applications,
can also run on parallel computers. SPPARKS will run on any parallel machine that compiles C++ and supports
the MPI message-passing library. This includes distributed- or shared-memory machines.

https://spparks.github.io
http://www-unix.mcs.anl.gov/mpi

SPPARKS is a freely-available open-source code. See the SPPARKS WWW Site for download information. It is
distributed under the terms of the GNU Public License (GPL), or sometimes by request under the terms of the
GNU Lesser General Public License (LGPL), which means you can use or modify the code however you wish.
The only restrictions imposed by the GPL or LGPL are on how you distribute the code further. See this section for
a brief discussion of the open-source philosophy.

1.2 SPPARKS features
These are three kinds of applications in SPPARKS:
® on-lattice
e off-lattice
® general
On-lattice applications define static event sites with a fixed neighbor connectivity. Off-lattice applications define
mobile event sites such as particles. A particle's neighbors are typically specified by a cutoff distance. General
applications have no spatial component.
The set of on-lattice applications currently in SPPARKS are:
e diffusion model
¢ Ising model
¢ Potts model in many variants
* membrane model
e sintering model
The set of off-lattice applications currently in SPPARKS are:
¢ Metropolis atomic relaxation model

The set of general applications currently in SPPARKS are:

¢ biochemcial reaction network model
e test driver for solvers using a synthetic biochemical network

These are the KMC solvers currently available in SPPARKS and their scaling properties:
e linear search, O(N)
¢ tree search, O(logN)
e composition-rejection search, O(1)
Pre- and post-processing:
Our group has written and released a separate toolkit called Pizza.py which provides tools which can be used to

setup, analyze, plot, and visualize data for SPPARKS simulations. Pizza.py is written in Python and is available
for download from the Pizza.py WWW site.

https://spparks.github.io
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/licenses/lgpl-2.1.html
https://lammps.github.io/pizza
http://www.python.org
https://lammps.github.io/pizza

1.3 Open source distribution

SPPARKS comes with no warranty of any kind. As each source file states in its header, it is a copyrighted code
that is distributed free-of- charge, under the terms of the GNU Public License (GPL), or sometimes by request
under the terms of the GNU Lesser General Public License (LGPL). This is often referred to as open-source
distribution - see www.gnu.org or www.opensource.org for more details. The legal text of the GPL or LGPL is in
the LICENSE file that is included in the SPPARKS distribution.

Here is a summary of what the GPL means for SPPARKS users:

(1) Anyone is free to use, modify, or extend SPPARKS in any way they choose, including for commercial
purposes.

(2) If you distribute a modified version of SPPARKS, it must remain open-source, meaning you distribute source
code under the terms of the GPL. You should clearly annotate such a code as a derivative version of SPPARKS.

(3) If you distribute any code that used SPPARKS source code, including calling it as a library, then that must
also be open-source, meaning you distribute its source code under the terms of the GPL.

(4) If you give SPPARKS files to someone else, the GPL LICENSE file and source file headers (including the
copyright and GPL notices) should remain part of the code.

In the spirit of an open-source code, if you use SPPARKS for something useful or if you fix a bug or add a new
feature or applicaton to the code, let us know. We would like to include your contribution in the released version
of the code and/or advertise your success on our WWW page.

1.4 Acknowledgments and citations

SPPARKS is distributed by Sandia National Laboratories. SPPARKS development has been funded by the US
Department of Energy (DOE), through its LDRD and ASC programs.

The Authors page of the SPPARKS website lists the developers and their contact info, along with others who
have contributed code and expertise to the developement of SPPARKS.

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/licenses/lgpl-2.1.html
http://www.gnu.org
http://www.opensource.org
http://www.sandia.gov
http://www.doe.gov
http://www.doe.gov
https://spparks.github.io/authors.html

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

2. Getting Started

This section describes how to unpack, make, and run SPPARKS.

2.1 What's in the SPPARKS distribution

2.2 Making SPPARKS

2.3 Making SPPARKS with optional packages
2.4 Building SPPARKS as a library

2.5 Running SPPARKS

2.6 Command-line options

2.7 SPPARKS screen output

2.1 What's in the SPPARKS distribution

When you download SPPARKS you will need to unzip and untar the downloaded file with the following
commands, after placing the tarball in an appropriate directory.

gunzip spparks*.tar.gz
tar xvf spparks*.tar

This will create a spparks directory containing two files and several sub-directories:

README |text file
LICENSE [the GNU General Public License (GPL)

doc documentation

examples |test problems

python Python wrapper

src source files

tools auxiliary tools

2.2 Making SPPARKS

This section has the following sub-sections:

® Read this first

¢ Building a SPPARKS executable

e Common errors that can occur when making SPPARKS
¢ Editing a new low-level Makefile

¢ Additional build tips

¢ Building for a Mac

¢ Building for Windows

Read this first:

Building SPPARKS can be non-trivial. You will likely need to edit a makefile, there are compiler options,
additional libraries can be used (MPI, JPEG), etc. Please read this section carefully. If you are not comfortable
with makefiles, or building codes on a Unix platform, or running an MPI job on your machine, please find a local
expert to help you.

https://spparks.github.io

Building a SPPARKS executable:

The src directory contains the C++ source and header files for SPPARKS. It also contains a top-level Makefile
and a MAKE sub-directory with low-level Makefile.* files for several machines. From within the src directory,
type "make" or "gmake". You should see a list of available choices. If one of those is the machine and options you
want, say serial or mpi or linux, then type one of the commands:

make serial
make mpi
gmake linux

Try the "serial" and "mpi" targets first, since they are generic and should typically work on any machine,
assuming you have the GNU g++ compiler (for the serial version) and MPI installed (for the mpi version).
Note that on a multi-processor or multi-core platform you can launch a parallel make, by using the "-j" switch
with the make command, which will typically build SPPARKS more quickly.

If you get no errors and an executable like spk_serial or spk_mpi is produced, you're done; it's your lucky day.
IMPORTANT NOTE: You need a C++ compiler that is C++11 compliant to build SPPARKS. Almost all current

C++ compilers are; you just need to use a -std=c++11 flag when compiling, as in the
src/MAKE/Makefile.machine files provided with SPPARKS.

Common errors that can occur when making SPPARKS:

(1) If the make command breaks immediately with errors that indicate it can't find files with a "*" in their names,
this can be because your machine's make doesn't support wildcard expansion in a makefile. Try gmake instead of
make.

(2) Other errors typically occur because the low-level Makefile isn't setup correctly for your machine. If your
platform is named "foo", you need to create a Makefile.foo in the MAKE sub-directory. Use whatever existing
file is closest to your platform as a starting point. See the next section for more instructions.

Editing a new low-level Makefile.foo:

These are the issues you need to address when editing a low-level Makefile for your machine. With a couple
exceptions, the only portion of the file you should need to edit is the "System-specific Settings" section.

(1) Change the first line of Makefile.foo to include the word "foo" and whatever other options you set. This is the
line you will see if you just type "make".

(2) The "compiler/linker settings" section lists compiler and linker settings for your C++ compiler, including path
and optimization flags. You can use g++, the open-source GNU compiler, which is available on all Unix systems.
You can also use mpicc which will typically be available if MPI is installed on your system, though you should
check which actual compiler it wraps. You can also point to a specific compiler; for example see
MAKE/Makefile.spencer.gnu where an environment variable MPI_HOME is used to specify path to mpicxx and
mpicc compilers.

Vendor compilers often produce faster code. On boxes with Intel CPUs, we suggest using the commercial Intel
icc compiler, which can be downloaded from Intel's compiler site.

http://www.intel.com/software/products/noncom

If building a C++ code on your machine requires additional libraries, then you should list them as part of the LIB
variable.

The DEPFLAGS setting is what triggers the C++ compiler to create a dependency list for a source file. This
speeds re-compilation when source (*.cpp) or header (*.h) files are edited. Some compilers do not support
dependency file creation, or may use a different switch than -D. GNU g++ works with -D. If your compiler can't
create dependency files (a long list of errors involving *.d files), then you'll need to create a Makefile.foo
patterned after Makefile.storm, which uses different rules that do not involve dependency files.

(3) The "system-specific settings" section has 3 parts.

(3.a2) The SPK_INC variable is used to include options that turn on system-dependent ifdefs within the SPPARKS
code. The settings that are currently recogized are:

¢ -DSPPARKS_GZIP

¢ -DSPPARKS_JPEG

¢ -DSPPARKS_SMALLBIG

¢ -DSPPARKS_BIGBIG

¢ -DSPPARKS_SMALLSMALL

The read_sites and dump commands will read/write gzipped files if you compile with -DSPPARKS_GZIP. It
requires that your Unix support the "popen" command.

If you use -DSPPARKS_JPEG, the dump image command will be able to write out JPEG image files. If not, it
will only be able to write out text-based PPM image files. For JPEG files, you must also link SPPARKS with a
JPEQG library. See section (3.c) below for more details on this.

Use at most one of the -DSPPARKS_SMALLBIG, -DSPPARKS_BIGBIG, -DSPPARKS_SMALLSMALL
settings. The default is -DSPPARKS_SMALLBIG. These settings refer to use of 4-byte (small) vs 8-byte (big)
integers within SPPARKS, as specified in src/spktype.h. The only reason to use the BIGBIG setting is to enable
simulation of systems with more than 2 billion sites. Normally, the only reason to use SMALLSMALL is if your
machine does not support 64-bit integers. See the Additional build tips section below for more details on these
settings.

(3.b) The 3 MPI variables are used to specify an MPI library to build SPPARKS with.

If you want SPPARKS to run in parallel, you must have an MPI library installed on your platform. If you use an
MPI-wrapped compiler, such as "mpicc" to build SPPARKS, you can probably leave these 3 variables blank. If
you do not use "mpicc" as your compiler/linker, then you need to specify where the mpi.h file (MPI_INC) and the
MPI library (MPI_PATH) is found and its name (MPI_LIB).

If you are installing MPI yourself, we recommend Argonne's MPICH 1.2 or 2.0 or OpenMPI. MPICH can be
downloaded from the Argonne MPI site. OpenMPI can be downloaded the OpenMPI site. LAM MPI should also
work. If you are running on a big parallel platform, your system people or the vendor should have already
installed a version of MPI, which will be faster than MPICH or OpenMPI or LAM, so find out how to build and
link with it. If you use MPICH or OpenMPI or LAM, you will have to configure and build it for your platform.
The MPI configure script should have compiler options to enable you to use the same compiler you are using for
the SPPARKS build, which can avoid problems that can arise when linking SPPARKS to the MPI library.

If you just want SPPARKS to run on a single processor, you can use the STUBS library in place of MPI, since
you don't need a true MPI library installed on your system. See the Makefile.serial file for how to specify the 3
MPI variables. You will also need to build the STUBS library for your platform before making SPPARKS itself.

http://www-unix.mcs.anl.gov/mpi
http://www.open-mpi.org

From the STUBS dir, type "make" and it will hopefully create a libmpi.a suitable for linking to SPPARKS. If this
build fails, you will need to edit the STUBS/Makefile for your platform.

The file STUBS/mpi.cpp has a CPU timer function MPI_Wtime() that calls gettimeofday() . If your system
doesn't support gettimeofday() , you'll need to insert code to call another timer. Note that the ANSI-standard
function clock() rolls over after an hour or so, and is therefore insufficient for timing long SPPARKS simulations.

(3.c) The 3 JPG variables are used to specify a JPEG library which SPPARKS uses when writing a JPEG file via
the dump image command. These can be left blank if you are not using the -DSPPARKS_JPEG switch discussed
above in section (3.a).

A standard JPEG library usually goes by the name libjpeg.a and has an associated header file jpeglib.h.
Whichever JPEG library you have on your platform, you'll need to set the appropriate JPG_INC, JPG_PATH, and
JPG_LIB variables in Makefile.foo so that the compiler and linker can find it.

That's it. Once you have a correct Makefile.foo and you have pre-built any other libraries it will use (e.g. MPI,
JPEQG), all you need to do from the src directory is type one of these 2 commands:

That's it. Once you have a correct Makefile.foo and you have pre-built the MPI library it uses, all you need to do
from the src directory is type one of these 2 commands:

make foo
gmake foo

You should get the executable spk_foo when the build is complete.

Additional build tips:
(1) Building SPPARKS for multiple platforms.

You can make SPPARKS for multiple platforms from the same src directory. Each target creates its own object
sub-directory called Obj_name where it stores the system-specific *.o files.

(2) Cleaning up.
Typing "make clean" will delete all *.0 object files created when SPPARKS is built.

(3) Changing the SPPARKS size limits via -DSPPARKS_SMALLBIG or -DSPPARKS_BIGBIG or
-DSPPARKS_SMALLSMALL

As explained above, any of these 3 settings can be specified on the SPK_INC line in your low-level
src/MAKE/Makefile.foo.

The default is -DSPPARKS_SMALLBIG which allows for systems with up to 2”31 sites (about 2 billion). This is
because the site IDs are stored in 32-bit integers.

To allow for larger systems, compile with -DSPPARKS_BIGBIG. This stores site IDs in 64-bit integers. This
enables systems with up to 2763 sites (about 9e18).

If your system does not support 8-byte integers, you will need to compile with the -DSPPARKS_SMALLSMALL
setting. This will restrict the total number of sites to 2731 (about 2 billion), as well as store some simulation
statistics in 4-byte integers.

Note that in src/lmptype.h there are definitions of all these data types as well as the MPI data types associated
with them. The MPI types need to be consistent with the associated C data types, or else SPPARKS will generate
a run-time error. As far as we know, the settings defined in src/spktype.h are portable and work on every current
system.

In all cases, the size of problem that can be run on a per-processor basis is limited by 4-byte integer storage to
2731 sites per processor (about 2 billion). This should not normally be a limitation since such a problem would
have a huge per-processor memory and would run very slowly in terms of CPU secs per Monte Carlo interation.

Building for a Mac:

OS Xis BSD Unix, so it already works. See the Makefile.mac file.

Building for Windows:

SPPARKS is just C++ with MPI calls, so it should be possible to build it for a Windows box, either using a Linux
installation such as cygwin (see src/MAKE/Makefile.cygwin), or importing the source files into Visual Studio
C++ and building it there. For the latter you are on your own. The SPPARKS developers do not use Windows.
But if you figure out how to do it, or create a Visual Studio project that works, please let us know, and we can
release the instructions/files for how to do this as part of SPPARKS.

2.3 Making SPPARKS with optional packages

The source code for SPPARKS is structured as a large set of core files which are always used, plus optional
packages, which are groups of files that enable a specific set of features. You can see the list of both standard and
user-contributed packages by typing "make package".

Currently there is only one optional package: STITCH. It is dicussed more below.

Any or all packages can be included or excluded when SPPARKS is built. You may wish to exclude certain
packages if you will never run certain kinds of simulations.

By default, SPPARKS includes no packages.

Packages are included or excluded by typing "make yes-name" or "make no-name", where "name" is the name of
the package. You can also type "make yes-all" or "make no-all" to include/exclude all packages. These commands
work by simply moving files back and forth between the main src directory and sub-directories with the package
name, so that the files are seen or not seen when SPPARKS is built. After you have included or excluded a
package, you must re-build SPPARKS.

Additional make options exist to help manage SPPARKS files that exist in both the src directory and in package
sub-directories. You do not normally need to use these commands unless you are editing SPPARKS files or have
downloaded a patch from the SPPARKS WWW site. Typing "make package-update" will overwrite src files with
files from the package directories if the package has been included. It should be used after a patch is installed,
since patches only update the master package version of a file. Typing "make package-overwrite" will overwrite
files in the package directories with src files. Typing "make package-check" will list differences between src and
package versions of the same files.

2.3.1 STITCH package

The STITCH package allows SPPARKS to use the Stitch library for I/O, which is included in the SPPARKS
distribution in lib/stitch. At some point the Stitch library will have its own website and will also be downloadable

10

there.

Stitch is an efficient I/O API and database format with a native python interface. Stitch files can read in to start a
simulation and/or output during a simulation. A novel aspect of stitch is that it enables out-of-core computations
by building a simulation domain analogously to the way an additive manufactured (AM) part is built. It merges
outputs written over time to efficiently construct a much larger simulation domain that would otherwise be
impossible to model in one simulation. Stitzching workflows can be created to perform multiple SPPARKS
simulations representing an additive manufacturing process; such simulations can produce huge numbers of lattice
sites representing an entire AM build that would otherwise be impossible to simulate due to length scale and
computational resource limitations. Stitch is intended and primarily focused on microstructural evolution
simulations such as welding and additive manufacturing but other applications may be possible.

Building SPPARKS with the STITCH package enables these commands to use stitch-related options:
¢ dump stitch
® set stitch

® reset_time

See the am_path and stitch sub-directories in the examples directory for models and scripts which use the Stitch
library.

You can build SPPARKS with stitch support in one of 3 ways.

(1) From the src directory using make

o°

cd spparks/src

% make lib-stitch args="-b" # build the Stitch library and set links to it
% make yes-stitch # install the STITCH package
% make mpi # or whichever machine target you wish
(2) From the lib directory using Install.py
% cd spparks/lib
% python Install.py -b # build the Stitch library and set links to it
% cd spparks/src
% make yes-stitch # install the STITCH package
% make mpi # or whichever machine target you wish

(3) Manual build of the Stitch library you have downloaded to your system

% cd S$STITCHDIR # STITCHDIR = the Stitch library directory
% make # build Stitch with default Makefile

% make —-f Makefile.custom # build Stitch with custom Makefile

% cd spparks/lib/stitch

% 1In -s S$STITCHDIR liblink # set two links in SPPARKS lib/stitch

o°

In —-s $STITCHDIR includelink

cd spparks/src

make yes-stitch # install the STITCH package

make mpi # or whichever machine target you wish

o° oo

o°

To un-install the STITCH package from SPPARKS, do the following:

% cd spparks/src
make no-stitch # un-install the STITCH package files
make mpi # re-build SPPARKS w/out the STITCH package

o°

o°

11

2.4 Building SPPARKS as a library

SPPARKS can be built as either a static or shared library, which can then be called from another application or a
scripting language. See this section for more info on coupling SPPARKS to other codes. See this section for more
info on wrapping and running SPPARKS from Python.

Static library:

To build SPPARKS as a static library (*.a file on Linux), type

make makelib
make —-f Makefile.lib foo

where foo is the machine name. This kind of library is typically used to statically link a driver application to
SPPARKS, so that you can insure all dependencies are satisfied at compile time. Note that inclusion or exclusion
of any desired optional packages should be done before typing "make makelib". The first "make" command will
create a current Makefile.lib with all the file names in your src dir. The second "make" command will use it to
build SPPARKS as a static library, using the ARCHIVE and ARFLAGS settings in src/MAKE/Makefile.foo. The
build will create the file libspparks_foo.a which another application can link to.

Shared library:

To build SPPARKS as a shared library (*.so file on Linux), which can be dynamically loaded, e.g. from Python,
type

make makeshlib
make —-f Makefile.shlib foo

where foo is the machine name. This kind of library is required when wrapping SPPARKS with Python; see
Section_python for details. Again, note that inclusion or exclusion of any desired optional packages should be
done before typing "make makelib". The first "make" command will create a current Makefile.shlib with all the
file names in your src dir. The second "make" command will use it to build SPPARKS as a shared library, using
the SHFLAGS and SHLIBFLAGS settings in src/MAKE/Makefile.foo. The build will create the file
libspparks_foo.so which another application can link to dyamically. It will also create a soft link libspparks.so,
which the Python wrapper uses by default.

Note that for a shared library to be usable by a calling program, all the auxiliary libraries it depends on must also
exist as shared libraries. This will be the case for libraries included with SPPARKS, such as the dummy MPI
library in src/STUBS since they are always built as shared libraries with the -fPIC switch. However, if a library
like MPI does not exist as a shared library, the second make command will generate an error. This means you will
need to install a shared library version of the package. The build instructions for the library should tell you how to
do this.

As an example, here is how to build and install the MPICH library, a popular open-source version of MPI,
distributed by Argonne National Labs, as a shared library in the default /usr/local/lib location:

./configure --enable-shared
make
make install

You may need to use "sudo make install" in place of the last line if you do not have write privileges for
/usr/local/lib. The end result should be the file /ust/local/lib/libmpich.so.

12

http://www-unix.mcs.anl.gov/mpi

Additional requirement for using a shared library:

The operating system finds shared libraries to load at run-time using the environment variable
LD_LIBRARY_PATH. So you may wish to copy the file src/libspparks.so or src/libspparks_g++.so (for
example) to a place the system can find it by default, such as /ust/local/lib, or you may wish to add the SPPARKS
src directory to LD_LIBRARY_PATH, so that the current version of the shared library is always available to
programs that use it.

For the csh or tcsh shells, you would add something like this to your ~/.cshrc file:
setenv LD_LIBRARY_PATH S$LD_LIBRARY_PATH:/home/sjplimp/spparks/src

Calling the SPPARKS library:

Either flavor of library (static or shared0 allows one or more SPPARKS objects to be instantiated from the calling
program.

When used from a C++ program, all of SPPARKS is wrapped in a SPPARKS_NS namespace; you can safely use
any of its classes and methods from within the calling code, as needed.

When used from a C or Fortran program or a scripting language like Python, the library has a simple
function-style interface, provided in src/library.cpp and src/library.h.

See the sample codes in examples/COUPLE/simple for examples of C++ and C and Fortran codes that invoke
SPPARKS thru its library interface. There are other examples as well in the COUPLE directory which are
discussed in Section_howto 2 of the manual. See Section_python of the manual for a description of the Python
wrapper provided with SPPARKS that operates through the SPPARKS library interface.

The files src/library.cpp and library.h define the C-style API for using SPPARKS as a library. See Section_howto
3 of the manual for a description of the interface and how to extend it for your needs.

2.5 Running SPPARKS

By default, SPPARKS runs by reading commands from stdin; e.g. spk_linux < in.file. This means you first create
an input script (e.g. in.file) containing the desired commands. This section describes how input scripts are
structured and what commands they contain.

You can test SPPARKS on any of the sample inputs provided in the examples directory. Input scripts are named
in.* and sample outputs are named log.*.name.P where name is a machine and P is the number of processors it
was run on.

Here is how you might run the Potts model tests on a Linux box, using mpirun to launch a parallel job:

cd src

make linux

cp spk_linux ../examples/1l]

cd ../examples/potts

mpirun -np 4 spk_linux <in.potts

The screen output from SPPARKS is described in a section below. As it runs, SPPARKS also writes a log.spparks
file with the same information.

Note that this sequence of commands copies the SPPARKS executable (spk_linux) to the directory with the input
files. This may not be necessary, but some versions of MPI reset the working directory to where the executable is,

13

rather than leave it as the directory where you launch mpirun from (if you launch spk_linux on its own and not
under mpirun). If that happens, SPPARKS will look for additional input files and write its output files to the
executable directory, rather than your working directory, which is probably not what you want.

If SPPARKS encounters errors in the input script or while running a simulation it will print an ERROR message
and stop or a WARNING message and continue. See this section for a discussion of the various kinds of errors
SPPARKS can or can't detect, a list of all ERROR and WARNING messages, and what to do about them.

SPPARKS can run a problem on any number of processors, including a single processor. SPPARKS can run as
large a problem as will fit in the physical memory of one or more processors. If you run out of memory, you must
run on more processors or setup a smaller problem.

2.6 Command-line options

At run time, SPPARKS recognizes several optional command-line switches which may be used in any order. For
example, spk_ibm might be launched as follows:

mpirun -np 16 spk_ibm -var f tmp.out -log my.log —-screen none <in.alloy
These are the command-line options:

—echo style

Set the style of command echoing. The style can be none or screen or log or both. Depending on the style, each
command read from the input script will be echoed to the screen and/or logfile. This can be useful to figure out
which line of your script is causing an input error. The default value is log. The echo style can also be set by using
the echo command in the input script itself.

-partition 8x2 4 5 ...

Invoke SPPARKS in multi-partition mode. When SPPARKS is run on P processors and this switch is not used,
SPPARKS runs in one partition, i.e. all P processors run a single simulation. If this switch is used, the P
processors are split into separate partitions and each partition runs its own simulation. The arguments to the
switch specify the number of processors in each partition. Arguments of the form MxN mean M partitions, each
with N processors. Arguments of the form N mean a single partition with N processors. The sum of processors in
all partitions must equal P. Thus the command "-partition 8x2 4 5" has 10 partitions and runs on a total of 25
processors.

The input script specifies what simulation is run on which partition; see the variable and next commands. This
howto section gives examples of how to use these commands in this way. Simulations running on different
partitions can also communicate with each other; see the temper command.

-in file
Specify a file to use as an input script. This is an optional switch when running SPPARKS in one-partition mode.
If it is not specified, SPPARKS reads its input script from stdin - e.g. spk_linux < in.run. This is a required switch
when running SPPARKS in multi-partition mode, since multiple processors cannot all read from stdin.

-log file

Specify a log file for SPPARKS to write status information to. In one-partition mode, if the switch is not used,
SPPARKS writes to the file log.spparks. If this switch is used, SPPARKS writes to the specified file. In
multi-partition mode, if the switch is not used, a log.SPPARKS file is created with hi-level status information.

14

Each partition also writes to a log. SPPARKS.N file where N is the partition ID. If the switch is specified in
multi-partition mode, the hi-level logfile is named "file" and each partition also logs information to a file.N. For
both one-partition and multi-partition mode, if the specified file is "none", then no log files are created. Using a
log command in the input script will override this setting.

-screen file

Specify a file for SPPARKS to write its screen information to. In one-partition mode, if the switch is not used,
SPPARKS writes to the screen. If this switch is used, SPPARKS writes to the specified file instead and you will
see no screen output. In multi-partition mode, if the switch is not used, hi-level status information is written to the
screen. Each partition also writes to a screen.N file where N is the partition ID. If the switch is specified in
multi-partition mode, the hi-level screen dump is named "file" and each partition also writes screen information to
a file.N. For both one-partition and multi-partition mode, if the specified file is "none", then no screen output is
performed.

-var name value

Specify a variable that will be defined for substitution purposes when the input script is read. "Name" is the
variable name which can be a single character (referenced as $x in the input script) or a full string (referenced as
${abc}). The value can be any string. Using this command-line option is equivalent to putting the line "variable
name index value" at the beginning of the input script. Defining a variable as a command-line argument overrides
any setting for the same variable in the input script, since variables cannot be re-defined. See the variable
command for more info on defining variables and this section for more info on using variables in input scripts.

2.7 SPPARKS screen output

As SPPARKS reads an input script, it prints information to both the screen and a log file about significant actions
it takes to setup a simulation. When the simulation is ready to begin, SPPARKS performs various initializations
and prints the amount of memory (in MBytes per processor) that the simulation requires. An example output is
shown here, for the examples/in.potts script run on 4 processors.

SPPARKS (11 Dec 2015)
Created box = (0 0 0) to (20 20 20)
1 by 2 by 2 processor grid
Creating sites
8000 sites
8000 sites have 26 neighbors
Setting site values
8000 settings made for site
Setting up run
Memory usage per processor = 4.375 Mbytes

During the run itself, statistical information is printed periodically, for every delta of simulation time, as specified
by the stats commmand. When the run concludes, SPPARKS prints final statistical info and a total run time for
the simulation.

Time Naccept Nreject Nsweeps CPU Energy
0 0 0 0 0 205912
10.01 88437 7919563 1001 0.195 72506
20 94828 15905172 2000 0.379 57038

30 98345 23901655 3000 0.565 499438

40 101449 31898551 4000 0.749 44316
50.01 103978 39904022 5001 0.933 39334
60.01 105578 47902422 6001 1.12 36902
70.01 106938 55901062 7001 1.3 34428
80 108491 63891509 8000 1.49 31668

90 110211 71889789 9000 1.67 27994

15

100 112074 79887926 10000 1.86 21894
Loop time of 1.86084 on 4 procs

It then appends statistics about the breakdown of CPU time for the simulation.

= 1.52001 (81.6842)

) = 0 (0)

0.245275 (13.1809)
0.0892967 (4.79874)

0 (0)

= 0.00625533 (0.336157)

Solve time (%
Update time (
Comm time (%
Outpt time
App time
Other time

o°

)
)
)
)
)

—_~ o~~~
o°

o°

16

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

3. Commands

This section describes how a SPPARKS input script is formatted and what commands are used to define a
simulation.

3.1 SPPARKS input script

3.2 Parsing rules

3.3 Input script structure

3.4 Commands listed by category
3.5 Commands listed alphabetically

3.1 SPPARKS input script

SPPARKS executes by reading commands from a input script (text file), one line at a time. When the input script
ends, SPPARKS exits. Each command causes SPPARKS to take some action. It may set an internal variable, read
in a file, or run a simulation. Most commands have default settings, which means you only need to use the
command if you wish to change the default.

In many cases, the ordering of commands in an input script is not important. However the following rules apply:
(1) SPPARKS does not read your entire input script and then perform a simulation with all the settings. Rather,

the input script is read one line at a time and each command takes effect when it is read. Thus this sequence of
commands:

count ligand 10000
run 100
run 100

does something different than this sequence:

run 100
count ligand 10000
run 100

In the first case, the count of ligand molecules is set to 10000 before the first simulation and whatever the count
becomes will be used as input for the second simulation. In the 2nd case, the default count of O is used for the 1st
simulation and then the count is set to 10000 molecules before the second simulation.

(2) Some commands are only valid when they follow other commands. For example you cannot set the count of a
molecular species until the add_species command has been used to define that species.

(3) Sometimes command B will use values that can be set by command A. This means command A must precede
command B in the input script if it is to have the desired effect.

(4) Some commands are only used by a specific application(s).
Many input script errors are detected by SPPARKS and an ERROR or WARNING message is printed. This

section gives more information on what errors mean. The documentation for each command lists restrictions on
how the command can be used.

17

https://spparks.github.io

3.2 Parsing rules

Each non-blank line in the input script is treated as a command. SPPARKS commands are case sensitive.
Command names are lower-case, as are specified command arguments. Upper case letters may be used in file
names or user-chosen ID strings.

Here is how each line in the input script is parsed by SPPARKS:

(1) If the line ends with a "&" character (with no trailing whitespace), the command is assumed to continue on the
next line. The next line is concatenated to the previous line by removing the "&" character and newline. This
allows long commands to be continued across two or more lines.

(2) All characters from the first "#" character onward are treated as comment and discarded.

(3) The line is searched repeatedly for $ characters which indicate variables that are replaced with a text string. If
the $ is followed by curly brackets, then the variable name is the text inside the curly brackets. If no curly
brackets follow the $, then the variable name is the character immediately following the $. Thus ${myTemp} and
$x refer to variable names "myTemp" and "x". See the variable command for details of how strings are assigned
to variables and how they are substituted for in input scripts.

(4) The line is broken into "words" separated by whitespace (tabs, spaces). Note that words can thus contain
letters, digits, underscores, or punctuation characters.

(5) The first word is the command name. All successive words in the line are arguments.
(6) Text with spaces can be enclosed in double quotes so it will be treated as a single argument. See the dump

modify or fix print commands for examples. A '# or '$' character that in text between double quotes will not be
treated as a comment or substituted for as a variable.

3.3 Input script structure
This section describes the structure of a typical SPPARKS input script. The "examples" directory in the
SPPARKS distribution contains sample input scripts; the corresponding problems are discussed in this section,
and some are animated on the SPPARKS website.
A SPPARKS input script typically has 3 parts:

¢ choice of application, solver, sweeper

® settings

¢ run a simulation
The last 2 parts can be repeated as many times as desired. L.e. run a simulation, change some settings, run some
more, etc. Each of the 3 parts is now described in more detail. Remember that almost all the commands need only
be used if a non-default value is desired.
(1) Choice of application, solver, sweep method
Use the app_style, solve_style, and sweep commands to setup the kind of simulation you wish to run. Note that
sweeping is only relevant to applications that define a geometric lattice of event sites and only if you wish to

perform rejection kinetic Monte Carlo updates.

(2) Settings

18

https://spparks.github.io

Parameters for a simulation can be defined by application-specific commands or by generic commands that are
common to many kinds of applications. See the doc pages for individual applications for information on the
former. Examples of the latter are the stats and temperature commands.

The diag_style command can also be used to setup various diagnostic computations to perform during a
simulation.

(3) Run a simulation

A kinetic or Metropolis Monte Carlo simulation is performed using the run command.

3.4 Commands listed by category

This section lists all SPPARKS commands, grouped by category. The next section lists the same commands
alphabetically. Note that some commands are only usable with certain applications. Also, some style options for
some commands are part of specific SPPARKS packages, which means they cannot be used unless the package
was included when SPPARKS was built. Not all packages are included in a default SPPARKS build. These
dependencies are listed as Restrictions in the command's documentation.

Initialization commands:

app_style, create_box, create_sites, processors, read_sites, region, solve_style

Setting commands:

dimension, boundary, lattice, pair_coeff, pair_style, reset_time, sector, seed, sweep, set

Application-specific commands:

add_reaction, add_species, barrier, count, deposition, ecoord, inclusion, pin, temperature, volume

Output commands:

diag_style, dump, dump image, dump_modify, dump_one, stats, undump

Actions:

run,

Miscellaneous:

clear, echo, if, include, jump, label, log, next, print, shell, variable

3.5 Individual commands

This section lists all SPPARKS commands alphabetically, with a separate listing below of styles within certain
commands. The previous section lists the same commands, grouped by category. Note that commands which are
only usable with certain applications are listed in the next section.

app_style

boundary

clear

create_box

create_sites

diag_style

dimension

dump

dump image

dump_modify

dump_one

echo

19

if include jump label lattice log
next | pair_coeff | pair_style print processors |read_sites
region |reset_time run sector seed set
shell |solve_style stats sweep undump | variable

Application-specific commands. These are commands defined only for use by one or more applications. See the
command doc page for details. See the various app_style commands in the next section for a listing of all the
commands defined for individual applications.

add_reaction add_species am_build |am cartesian_layer am pass am path
am path_layer am pathgen barrier count deep_length deep_width
deposition |diffusion/multiphase| ecoord elliopsoid_depth event inclusion
pin pulse temperature volume weld_shape_ellipse|weld_shape_teardrop

Application styles. See the app_style command for one-line descriptions of each style or click on the style itself
for a full description:

am/ellipsoid chemistry diffusion |diffusion/multiphase erbium ising ising/single| membrane
phasefield/potts potts potts/am/bezier| potts/am/path/gen [potts/am/weld| potts/grad |potts/neigh |potts/neighonly
potts/pin potts/quaternion| potts/strain potts/strain/pin potts/weld |potts/weld/jom| relax sinter
S0S test/group

Solve styles. See the solve_style command for one-line descriptions of each style or click on the style itself for a

full description:

| group |linear |tree |

Pair styles. See the pair_style command for one-line descriptions of each style or click on the style itself for a full

description:

Diagnostic styles. See the diag_style command for one-line descriptions of each style or click on the style itself
for a full description:

array

cluster

diffusion

energy

erbium |propensity

sinter_avg_

neck_area|sinter_den

sity

sinter_free_energy_pore

sinter_por €_curvature

20

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

4. How-to discussions

The following sections describe how to perform various operations in SPPARKS.
4.1 Running multiple simulations from one input script

4.2 Coupling SPPARKS to other codes

4.3 Library interface to SPPARKS

The example input scripts included in the SPPARKS distribution and highlighted in this section also show how to
setup and run various kinds of problems.

4.1 Running multiple simulations from one input script

This can be done in several ways. See the documentation for individual commands for more details on how these
examples work.

If "multiple simulations" means continue a previous simulation for more timesteps, then you simply use the run
command multiple times. For example, this script

app_style ising/2d/4n 100 100 12345

run 1.0
run 1.0
run 1.0
run 1.0
run 1.0

would run 5 successive simulations of the same system for a total of 5.0 seconds of elapsed time.

If you wish to run totally different simulations, one after the other, the clear command can be used in between
them to re-initialize SPPARKS. For example, this script

app_style ising/2d/4n 100 100 12345
run 1.0

clear

app_style ising/2d/4n 200 200 12345

run 1.0
would run 2 independent simulations, one after the other.

For large numbers of independent simulations, you can use variables and the next and jump commands to loop
over the same input script multiple times with different settings. For example, this script, named in.runs

variable d index runl run2 run3 rund4 run5 run6 run7 run8
shell cd $d

app_style ising/2d/4n 100 100 12345

include temperature.txt

run 1.0

shell cd ..

clear

next d

21

https://spparks.github.io

jump in.runs

would run 8 simulations in different directories, using a temperature.txt file in each directory with an input
command to set the temperature. The same concept could be used to run the same system at 8 different sizes,
using a size variable and storing the output in different log files, for example

variable a loop 8

variable size index 100 200 400 800 1600 3200 6400 10000
log log.${size}

app_style ising/2d/4n ${size} ${size} 12345

run 1.0

next size

next a

jump in.runs

All of the above examples work whether you are running on 1 or multiple processors, but assumed you are
running SPPARKS on a single partition of processors. SPPARKS can be run on multiple partitions via the
"-partition" command-line switch as described in this section of the manual.

In the last 2 examples, if SPPARKS were run on 3 partitions, the same scripts could be used if the "index" and
"loop" variables were replaced with universe-style variables, as described in the variable command. Also, the
"next size" and "next a" commands would need to be replaced with a single "next a size" command. With these
modifications, the 8 simulations of each script would run on the 3 partitions one after the other until all were
finished. Initially, 3 simulations would be started simultaneously, one on each partition. When one finished, that
partition would then start the 4th simulation, and so forth, until all 8 were completed.

4.2 Coupling SPPARKS to other codes

SPPARKS is designed to allow it to be coupled to other codes. For example, an atomistic code might relax atom
positions and pass those positions to SPPARKS. Or a continuum finite element (FE) simulation might use a
Monte Carlo relaxation to formulate a boundary condition on FE nodal points, compute a FE solution, and return
the results to the MC calculation.

SPPARKS can be coupled to other codes in at least 3 ways. Each has advantages and disadvantages, which you'll
have to think about in the context of your application.

(1) Define a new diag_style command that calls the other code. In this scenario, SPPARKS is the driver code.
During its timestepping, the diagnostic is invoked, and can make library calls to the other code, which has been
linked to SPPARKS as a library. See this section of the documentation for info on how to add a new diagnostic to
SPPARKS.

(2) Define a new SPPARKS command that calls the other code. This is conceptually similar to method (1), but in
this case SPPARKS and the other code are on a more equal footing. Note that now the other code is not called
during the even loop of a SPPARKS run, but between runs. The SPPARKS input script can be used to alternate
SPPARKS runs with calls to the other code, invoked via the new command.

In this scenario, the other code can be called as a library, as in (1), or it could be a stand-alone code, invoked by a
system() call made by the command (assuming your parallel machine allows one or more processors to start up
another program). In the latter case the stand-alone code could communicate with SPPARKS thru files that the

command writes and reads.

See this section of the documentation for how to add a new command to SPPARKS.

22

(3) Use SPPARKS as a library called by another code. In this case the other code is the driver and calls
SPPARKS as needed. Or a wrapper code could link and call both SPPARKS and another code as libraries.

Examples of driver codes that call SPPARKS as a library are included in the examples/COUPLE directory of the
SPPARKS distribution; see examples/COUPLE/README for more details:

¢ simple: simple driver programs in C++ and C which invoke SPPARKS as a library (NOTE: not yet
available)

¢ lammps_spparks: coupling of SPPARKS and LAMMPS, to couple a kinetic Monte Carlo model for grain
growth using MD to calculate strain induced across grain boundaries

This section of the documentation describes how to build SPPARKS as a library. Once this is done, you can
interface with SPPARKS either via C++, C, Fortran, or Python (or any other language that supports a vanilla
C-like interface). For example, from C++ you could create one (or more) "instances" of SPPARKS, pass it an
input script to process, or execute individual commands, all by invoking the correct class methods in SPPARKS.
From C or Fortran you can make function calls to do the same things. See Section_python of the manual for a
description of the Python wrapper provided with SPPARKS that operates through the SPPARKS library interface.

The files src/library.cpp and library.h contain the C-style interface to SPPARKS. See Section_howto 3 of the
manual for a description of the interface and how to extend it for your needs.

Note that the spparks_open() function that creates an instance of SPPARKS takes an MPI communicator as an
argument. This means that instance of SPPARKS will run on the set of processors in the communicator. Thus the
calling code can run SPPARKS on all or a subset of processors. For example, a wrapper script might decide to
alternate between SPPARKS and another code, allowing them both to run on all the processors. Or it might
allocate half the processors to SPPARKS and half to the other code and run both codes simultaneously before
syncing them up periodically. Or it might instantiate multiple instances of SPPARKS to perform different
calculations.

4.3 Library interface to SPPARKS

As described in Section_start 4, SPPARKS can be built as a library, so that it can be called by another code, used
in a coupled manner with other codes, or driven through a Python interface.

All of these methodologies use a C-style interface to SPPARKS that is provided in the files src/library.cpp and
src/library.h. The functions therein have a C-style argument list, but contain C++ code you could write yourself in
a C++ application that was invoking SPPARKS directly. The C++ code in the functions illustrates how to invoke
internal SPPARKS operations. Note that SPPARKS classes are defined within a SPPARKS namespace
(SPPARKS_NS) if you use them from another C++ application.

Library.cpp contains these 4 functions:

void spparks_open(int, char **, MPI_Comm, void **);
void spparks_close (void *);

void spparks_file(void *, char *);

char *spparks_command (void *, char *);

The spparks_open() function is used to initialize SPPARKS, passing in a list of strings as if they were
command-line arguments when SPPARKS is run in stand-alone mode from the command line, and a MPI
communicator for SPPARKS to run under. It returns a ptr to the SPPARKS object that is created, and which is
used in subsequent library calls. The spparks_open() function can be called multiple times, to create multiple
instances of SPPARKS.

23

https://www.lammps.org

SPPARKS will run on the set of processors in the communicator. This means the calling code can run SPPARKS
on all or a subset of processors. For example, a wrapper script might decide to alternate between SPPARKS and
another code, allowing them both to run on all the processors. Or it might allocate half the processors to
SPPARKS and half to the other code and run both codes simultaneously before syncing them up periodically. Or
it might instantiate multiple instances of SPPARKS to perform different calculations.

The spparks_close() function is used to shut down an instance of SPPARKS and free all its memory.

The spparks_file() and spparks_command() functions are used to pass a file or string to SPPARKS as if it were an
input script or single command in an input script. Thus the calling code can read or generate a series of SPPARKS
commands one line at a time and pass it thru the library interface to setup a problem and then run it, interleaving
the spparks_command() calls with other calls to extract information from SPPARKS, perform its own operations,
or call another code's library.

Other useful functions are also included in library.cpp. For example:

void *spparks_extract (void *, char *)
double *spparks_energy ()

These can extract various global or per-site quantities from SPPARKS so that a driver application can access the
values or even reset them. See the library.cpp file and its associated header file library.h for details.

The key idea of the library interface is that you can write any functions you wish to define how your code talks to
SPPARKS and add them to src/library.cpp and src/library.h, as well as to the Python interface. The routines you
add can access or change any SPPARKS data you wish. The examples/COUPLE and python directories have
example C++ and C and Python codes which show how a driver code can link to SPPARKS as a library, run
SPPARKS on a subset of processors, grab data from SPPARKS, change it, and put it back into SPPARKS.

24

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

5. Example problems

The SPPARKS distribution includes an examples sub-directory with several sample problems. Each problem is in
a sub-directory of its own. Most are small models that can be run quickly, requiring at most a couple of minutes to
run on a desktop machine. Each problem has an input script (in.*) and produces a log file (log.*) and dump file
(dump.*) when it runs. A few sample log file outputs on different machines and different numbers of processors
are included in the directories to compare your answers to. E.g. a log file like log.potts.foo.P means it ran on P
processors of machine "foo".

In some cases, the dump files produced by the example runs can be animated using the various visuzlization tools,
such as the Pizza.py toolkit referenced in the Additional Tools section of the SPPARKS documentation.

Animations of some of these examples can be viewed on the Movies section of the SPPARKS WWW Site.

These are the sample problems in the examples sub-directories:

groups test of group-based KMC solver

ising standard Ising model

membrane [membrane model of pore formation around protein inclusions

potts multi-state Potts model for grain growth

Here is how you might run and visualize one of the sample problems:

cd examples/potts
cp ../../src/spk_linux . # copy SPPARKS executable to this dir
spk_linux <in.potts # run the problem

Running the simulation produces the files dump.potts and log.spparks.

If you add dump image line(s) to the input script a series of JPG images will be produced by the run. These can be
viewed individually or turned into a movie or animated by tools like ImageMagick or QuickTime or various
Windows-based tools. See the dump image doc page for more details. E.g. this Imagemagick command would
create a GIF file suitable for viewing in a browser.

% convert -loop 1 *.Jjpg foo.gif

There is also a COUPLE directory with examples of how to use SPPARKS as a library, either by itself or in
tandem with another code or library. See the COUPLE/README file to get started.

25

https://spparks.github.io
https://spparks.github.io

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

6. Performance & scalability

Eventually this section will highlight SPPARKS performance in serial and parallel on interesting Monte Carlo
benchmarks.

26

https://spparks.github.io

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

7. Additional tools

SPPARKS is designed to be a Monte Carlo (MC) kernel for performing kinetic MC or Metropolis MC
computations. Additional pre- and post-processing steps are often necessary to setup and analyze a simulation.
This section describes additional tools that may be useful.

Users can extend SPPARKS by writing diagnostic classes that perform desired analysis or computations. See this
section for more info.

Our group has written and released a separate toolkit called Pizza.py which provides tools which may be useful
for setup, analysis, plotting, and visualization of SPPARKS simulations. Pizza.py is written in Python and is
available for download from the Pizza.py WWW site.

Addtional scripts below are distributed with spparks under the tools directory.

® potts_quaternion/cpp_quaternion.py: enables reading spparks quaternion header files

e potts_quaternion/plot_cubic_symmetry_histograms.py: verification plots for disorientation distribution of
randomly oriented cubic structures

e potts_quaternion/plot_hcp_symmetry_histograms.py: verification plots for disorientation distribution of
randomly oriented hcp structures

27

https://spparks.github.io
https://lammps.github.io/pizza
http://www.python.org
https://lammps.github.io/pizza

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

8. Modifying & extending SPPARKS

SPPARKS is designed in a modular fashion so as to be easy to modify and extend with new functionality.

In this section, changes and additions users can make are listed along with minimal instructions. If you add a new
feature to SPPARKS and think it will be of interest to general users, we encourage you to submit it to the
developers for inclusion in the released version of SPPARKS.

The best way to add a new feature is to find a similar feature in SPPARKS and look at the corresponding source
and header files to figure out what it does. You will need some knowledge of C++ to be able to understand the
hi-level structure of SPPARKS and its class organization, but functions (class methods) that do actual
computations are written in vanilla C-style code and operate on simple C-style data structures (vectors and
arrays).

Most of the new features described in this section require you to write a new C++ derived class. Creating a new
class requires 2 files, a source code file (*.cpp) and a header file (*.h). The derived class must provide certain
methods to work as a new option. Depending on how different your new feature is compared to existing features,
you can either derive from the base class itself, or from a derived class that already exists. Enabling SPPARKS to
invoke the new class is as simple as adding two lines to the style_user.h file, in the same syntax as other
SPPARKS classes are specified in the style.h file.

The advantage of C++ and its object-orientation is that all the code and variables needed to define the new feature
are in the 2 files you write, and thus shouldn't make the rest of SPPARKS more complex or cause side-effect
bugs.

Here is a concrete example. Suppose you write 2 files app_foo.cpp and app_foo.h that define a new class AppFoo
that implements a Monte Carlo model described in the classic 1997 paper by Foo, et al. If you wish to invoke that
application in a SPPARKS input script with a command like

app_style foo 0.1 3.5

you put your 2 files in the SPPARKS src directory and re-make the code. The app_foo.h file should have these
lines at the top

#ifdef APP_CLASS
AppStyle (foo, AppFoo)
#else

where "foo" is the style keyword to be used in the app_style command, and AppFoo is the class name in your
C++ files.

When you re-make SPPARKS, your new application becomes part of the executable and can be invoked with a
app_style command like the example above. Arguments like 0.1 and 3.5 can be defined and processed by your
new class.

Here is a list of the new features that can be added in this way.
¢ Application styles
¢ Diagnostic styles

¢ Input script commands
¢ Solve styles

28

https://spparks.github.io

As illustrated by the application example, these options are referred to in the SPPARKS documentation as the
"style" of a particular command.

The instructions below give the header file for the base class that these styles are derived from. Public variables in
that file are ones used and set by the derived classes which are also used by the base class. Sometimes they are
also used by the rest of SPPARKS. Virtual functions in the base class header file which are set = 0 are ones you
must define in your new derived class to give it the functionality SPPARKS expects. Virtual functions that are not
set to 0 are functions you can optionally define.

Application styles

In SPPARKS, applications are what define the simulation model that is evolved via Monte Carlo algorithms. A
new model typically requires adding a new application to the code. Read the doc page for the app_style command
to understand the distinction between on-lattice and off-lattice applications. A new off-lattice application can be
anything you wish. On-lattice applications are derive from the AppLattice class.

For on-lattice and off-lattice applications, here is a brief description of methods you define in your new derived
class. Some of them are required; some are optional. See app.h for details.

input_app additional commands the application defines
grow_app set pointers to per-site arrays used by the application
init_app initialize the application before a run

site_energy compute energy of a site

site_event_rejection |[peform an event with null-bin rejection (for rKMC)

site_propensity compute propensity of all events on a site (for KMC)

site_event perform an event (for KMC)

Note that two of the methods are required if you want your application to perform kinetic Monte Carlo (KMC)
with a solver. One of the methods is required if you want your application to perform rejection KMC (rKMC)
with a sweep method.

The constructor for your application class also needs to define, to insure proper operation with the "KMC
solvers'_solve.html and rejection KMC sweep methods. These are the flags, all of which have default values set in
app_lattice.cpp:

ninteger how many integer values are defined per site

ndouble how many floating point values are defined per site

delpropensity [how many neighbors away values are needed to compute propensity

delevent how many neighbors away may the value can be changed by an event
allow_kmc 1 if methods are provided for KMC

allow_rejection |1 if methods are provided for rejection KMC

allow_masking |1 if rKMC method supports masking

numrandom # of random numbers used by the site_event_rejection method

Diagnostic styles

Diagnostic classes compute some form of analysis periodically during a simulation. See the diag_style command
for details.

29

To add a new diagnostic, here is a brief description of methods you define in your new derived class. Some of
them are required; some are optional. See diag.h for details.

init setup the computation

compute perform the analysis computation

stats_header |what to add to statistics header for this diagnostic

stats fields added to statistics by this diagnostic

Input script commands

New commands can be added to SPPARKS input scripts by adding new classes that have a "command" method
and are listed in the Command sections of style_user.h (or style.h). For example, the shell commands (cd, mkdir,
rm, etc) are implemented in this fashion. When such a command is encountered in the SPPARKS input script,
SPPARKS simply creates a class with the corresponding name, invokes the "command" method of the class, and
passes it the arguments from the input script. The command method can perform whatever operations it wishes on
SPPARKS data structures.

The single method your new class must define is as follows:

command |operations performed by the new command

Of course, the new class can define other methods and variables as needed.

Solve styles

In SPPARKS, a solver performs the kinetic Monte Carlo (KMC) operation of selecting an event from a list of
events and associated probabilities. See the solve_style command for details.

To add a new KMC solver, here is a brief description of methods you define in your new derived class. Some of
them are required; some are optional. See diag.h for details.

Here is a brief description of methods you define in your new derived class. All of them are required. See solve.h
for details.

clone [make a copy of the solver for use within a sector of the domain

init initialize the solver

update [update one or more event probabilities

resize |change the number of events in the list

event |[select an event and associated timestep

(Foo) Foo, Morefoo, and Maxfoo, J of Classic Monte Carlo Applications, 75, 345 (1997).

30

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

9. Errors

This section describes the various kinds of errors you can encounter when using SPPARKS.

10.1 Common problems
10.2 Reporting bugs
10.3 Error & warning messages

9.1 Common problems

A SPPARKS simulation typically has two stages, setup and run. Many SPPARKS errors are detected at setup
time; others may not occur until the middle of a run.

SPPARKS tries to flag errors and print informative error messages so you can fix the problem. Of course
SPPARKS cannot figure out your physics mistakes, like choosing too big a timestep or setting up an invalid
lattice. If you find errors that SPPARKS doesn't catch that you think it should flag, please send an email to the
developers.

If you get an error message about an invalid command in your input script, you can determine what command is
causing the problem by looking in the log.spparks file or using the echo command to see it on the screen. For
example you can run your script as

spk_linux -echo screen <in.script

For a given command, SPPARKS expects certain arguments in a specified order. If you mess this up, SPPARKS
will often flag the error, but it may read a bogus argument and assign a value that is not what you wanted. E.g. if
the input parser reads the string "abc" when expecting an integer value, it will assign the value of 0 to a variable.

Generally, SPPARKS will print a message to the screen and exit gracefully when it encounters a fatal error.
Sometimes it will print a WARNING and continue on; you can decide if the WARNING is important or not. If
SPPARKS crashes or hangs without spitting out an error message first then it could be a bug (see this section) or
one of the following cases:

SPPARKS runs in the available memory each processor can allocate. All large memory allocations in the code are
done via C-style malloc's which will generate an error message if you run out of memory. Smaller chunks of
memory are allocated via C++ "new" statements. If you are unlucky you could run out of memory when one of
these small requests is made, in which case the code will crash, since SPPARKS doesn't trap on those errors.

[llegal arithmetic can cause SPPARKS to run slow or crash. This is typically due to invalid physics and numerics
that your simulation is computing. If you see wild energy values or NaN values in your SPPARKS output,
something is wrong with your simulation.

In parallel, one way SPPARKS can hang is due to how different MPI implementations handle buffering of
messages. If the code hangs without an error message, it may be that you need to specify an MPI setting or two
(usually via an environment variable) to enable buffering or boost the sizes of messages that can be buffered.

31

https://spparks.github.io

9.2 Reporting bugs
If you are confident that you have found a bug in SPPARKS, please send an email to the developers.

First, check the "New features and bug fixes" section of the SPPARKS WWW site to see if the bug has already
been reported or fixed.

If not, the most useful thing you can do for us is to isolate the problem. Run it on the smallest problem and fewest
number of processors and with the simplest input script that reproduces the bug.

In your email, describe the problem and any ideas you have as to what is causing it or where in the code the
problem might be. We'll request your input script and data files if necessary.

9.3 Error & warning messages

These are two alphabetic lists of the ERROR and WARNING messages SPPARKS prints out and the reason why.
If the explanation here is not sufficient, the documentation for the offending command may help. Grepping the
source files for the text of the error message and staring at the source code and comments is also not a bad idea!
Note that sometimes the same message can be printed from multiple places in the code.

Errors:

Adding site to bin it is not in
Internal SPPARKS error.
Adding site to illegal bin
Internal SPPARKS error.
All pair coeffs are not set
Self-explanatory.
All universe/uloop variables must have same # of values
Self-explanatory.
All variables in next command must be same style
Self-explanatory.
Another input script is already being processed
Cannot attempt to open a 2nd input script, when the original file is still being processed.
App cannot use both a KMC and rejection KMC solver
You cannot define both a solver and sweep option.
App did not set dt_sweep
Internal SPPARKS error.
App does not permit user_update yes
UNDOCUMENTED
App needs a KMC or rejection KMC solver
You must define either a solver or sweep option.
App relax requires a pair potential
Self-explanatory.
App style proc count is not valid for 1d simulation
There can only be 1 proc in y and z dimensions for 1d models.
App style proc count is not valid for 2d simulation
There can only be 1 proc in the z dimension for 2d models.
App_style command after simulation box is defined
Self-explanatory.
App_style specific command before app_style set
Self-explanatory.

32

https://spparks.github.io

Application cutoff is too big for processor sub-domain
There must be at least 2 bins per processor in each dimension where sectoring occurs.
Arccos of invalid value in variable formula
Argument of arccos() must be between -1 and 1.
Arcsin of invalid value in variable formula
Argument of arcsin() must be between -1 and 1.
BAD DONE
UNDOCUMENTED
BAD STENCIL
UNDOCUMENTED
BIN MISMATCH
UNDOCUMENTED
Bad neighbor site ID
UNDOCUMENTED
Bigint setting in spktype.h is invalid
UNDOCUMENTED
Boundary command after simulation box is defined
UNDOCUMENTED
Boundary command currently only supported by on-lattice apps
UNDOCUMENTED
Box bounds are invalid
Lo bound >= hi bound.
COUNT MISMATCH
UNDOCUMENTED
Can only read Neighbors for on-lattice applications
UNDOCUMENTED
Can only use ecoord command with app_style diffusion nonlinear
Self-explanatory.
Cannot color this combination of lattice and app

Coloring is not supported on this lattice for the neighbor dependencies of this application.

Cannot color without a lattice definition of sites
UNDOCUMENTED

Cannot color without contiguous site IDs
UNDOCUMENTED

Cannot create box after simulation box is defined
Self-explanatory.

Cannot create box with this application style
This application does not support spatial domains.

Cannot create sites after sites already exist
Self-explanatory.

Cannot create sites with undefined lattice
Must use lattice commands first to define a lattice.

Cannot create/grow a vector/array of pointers for %s
UNDOCUMENTED

Cannot define Schwoebel barrier without Schwoebel model
Self-explanatory.

Cannot dump JPG file
UNDOCUMENTED

Cannot open diag style cluster dump file
Self-explanatory.

Cannot open diag_style cluster dump file
Self-explanatory.

33

Cannot open diag_style cluster output file
Self-explanatory.

Cannot open dump file
Self-explanatory.

Cannot open file %s
Self-explanatory.

Cannot open gzipped file
Self-explantory.

Cannot open input script %s
Self-explanatory.

Cannot open log.spparks
Self-explanatory.

Cannot open logfile
Self-explanatory.

Cannot open logfile %s
Self-explanatory.

Cannot open screen file
The screen file specified as a command-line argument cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot open universe log file
For a multi-partition run, the master log file cannot be opened. Check that the directory you are running in
allows for files to be created.

Cannot open universe screen file
For a multi-partition run, the master screen file cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot perform deposition in parallel
UNDOCUMENTED

Cannot perform deposition with multiple sectors
UNDOCUMENTED

Cannot read Neighbors after sites already exist
UNDOCUMENTED

Cannot read Neighbors unless max neighbors is set
UNDOCUMENTED

Cannot read Sites after sites already exist
UNDOCUMENTED

Cannot read Values before sites exist or are read
UNDOCUMENTED

Cannot redefine variable as a different style
An equal-style variable can be re-defined but only if it was originally an equal-style variable.

Cannot run 1d simulation with nonperiodic Y or Z dimension
UNDOCUMENTED

Cannot run 2d simulation with nonperiodic Z dimension
UNDOCUMENTED

Cannot run application until simulation box is defined
Self-explanatory.

Cannot use %s command until sites exist
This command requires sites exist before using it in an input script.

Cannot use KMC solver in parallel with no sectors
Self-explanatory.

Cannot use color/strict rejection KMC with sectors
Self-explanatory.

Cannot use coloring without domain nx,ny,nz defined

34

UNDOCUMENTED
Cannot use create_sites basis with random lattice
Self-explanatory.
Cannot use diag_style cluster without a lattice defined
This diagnostic uses the lattice style to dump OpenDx files.
Cannot use dump_one for first snapshot in dump file
Self-explanatory.
Cannot use random rejection KMC in parallel with no sectors
Self-explanatory.
Cannot use raster rejection KMC in parallel with no sectors
Self-explanatory.
Cannot use region INF or EDGE when box does not exist
Can only define a region with these parameters after a simulation box has been defined.
Choice of sector stop led to no rKMC events
Self-explanatory.
Color stencil is incommensurate with lattice size
Since coloring induces a pattern of colors, this pattern must fit an integer number of times into a periodic

lattice.

Could not find dump ID in dump_modify command
Self-explanatory.

Could not find dump ID in dump_one command
Self-explanatory.

Could not find dump ID in undump command
Self-explanatory.

Create_box command before app_style set
Self-explanatory.

Create_box region ID does not exist
Self-explanatory.

Create_box region must be of type inside
Self-explanatory.

Create_sites command before app_style set
Self-explanatory.

Create_sites command before simulation box is defined
Self-explanatory.

Create_sites region ID does not exist
Self-explanatory.

Creating a quantity application does not support
The application defines what variables it supports. You cannot set a variable with the create_sites
command for a variable that isn't supported.

Data file dimension does not match existing box
UNDOCUMENTED

Data file maxneigh setting does not match existing sites
UNDOCUMENTED

Data file number of sites does not match existing sites
UNDOCUMENTED

Data file simluation box different that current box
UNDOCUMENTED

Diag cluster does not work if ncluster > 2°31
UNDOCUMENTED

Diag cluster dvalue in neighboring clusters do not match
Internal SPPARKS error.

Diag cluster ivalue in neighboring clusters do not match

35

Internal SPPARKS error.
Diag propensity requires KMC solve be performed
Only KMC solvers compute a propensity for sites and the system.
Diag style cluster dump file name too long
Self-explanatory.
Diag style incompatible with app style
The lattice styles of the diagnostic and the on-lattice application must match.
Diag_style cluster incompatible with lattice style
UNDOCUMENTED
Diag_style cluster nx,ny,nz = 0
UNDOCUMENTED
Diag_style command before app_style set
Self-explanatory.
Diag_style diffusion requires app_style diffusion
Self-explanatory.
Diag_style erbium requires app_style erbium
UNDOCUMENTED

Did not assign all sites correctly

One or more sites in the read_sites file were not assigned to a processor correctly.

Did not create correct number of sites
One or more created sites were not assigned to a processor correctly.

Did not reach event propensity threshhold
UNDOCUMENTED

Dimension command after lattice is defined
Self-explanatory.

Dimension command after simulation box is defined
Self-explanatory.

Divide by 0 in variable formula
Self-explanatory.

Dump command before app_style set
Self-explanatory.

Dump command can only be used for spatial applications
Self-explanatory.

Dump image boundary requires lattice app
UNDOCUMENTED

Dump image crange must be set
UNDOCUMENTED

Dump image drange must be set
UNDOCUMENTED

Dump image persp option is not yet supported
UNDOCUMENTED

Dump image requires one snapshot per file
UNDOCUMENTED

Dump image with quantity application does not support
UNDOCUMENTED

Dump requires propensity but no KMC solve performed
Only KMC solvers compute propensity for sites.

Dump_modify command before app_style set
Self-explanatory.

Dump_modify region ID does not exist
UNDOCUMENTED

Dump_modify scolor requires integer attribute for dump image color

36

UNDOCUMENTED
Dump_modify sdiam requires integer attribute for dump image diameter
UNDOCUMENTED
Dump_one command before app_style set
Self-explanatory.
Dumping a quantity application does not support
The application defines what variables it supports. You cannot output a variable in a dump that isn't
supported.
Failed to allocate %ld bytes for array %s
Your SPPARKS simulation has run out of memory. You need to run a smaller simulation or on more
processors.
Failed to reallocate %ld bytes for array %s
Your SPPARKS simulation has run out of memory. You need to run a smaller simulation or on more
processors.
GHOST IN OWNED BIN
UNDOCUMENTED
Ghost connection was not found
Internal SPPARKS error. Should not occur.
Ghost site was not found
Internal SPPARKS error. Should not occur.
lllegal ... command
Self-explanatory. Check the input script syntax and compare to the documentation for the command. You
can use -echo screen as a command-line option when running SPPARKS to see the offending line.
Incorrect args for pair coefficients
Self-explanatory.
Incorrect lattice neighbor count
Internal SPPARKS error.
Incorrect site format in data file
Self-explanatory.
Incorrect value format in data file
Self-explanatory.
Input line too long after variable substitution
This is a hard (very large) limit defined in the input.cpp file.
Input line too long: %s
This is a hard (very large) limit defined in the input.cpp file.
Invalid attribute in dump text command
UNDOCUMENTED
Invalid color in dump_modify command
UNDOCUMENTED
Invalid command-line argument
One or more command-line arguments is invalid. Check the syntax of the command you are using to
launch SPPARKS.
Invalid diag_style command
UNDOCUMENTED
Invalid dump image filename
UNDOCUMENTED
Invalid dump image persp value
UNDOCUMENTED
Invalid dump image theta value
UNDOCUMENTED
Invalid dump image zoom value

UNDOCUMENTED

37

Invalid dump style
UNDOCUMENTED

Invalid dump_modify threshold operator
Self-explanatory.

Invalid event count for app_style test/group
Number of events must be > 0.

Invalid image color range
UNDOCUMENTED

Invalid image up vector
UNDOCUMENTED

Invalid keyword in dump command
Self-explanatory.

Invalid keyword in variable formula
UNDOCUMENTED

Invalid math function in variable formula
The math function is not recognized.

Invalid number of sectors
Self-explanatory.

Invalid pair style
Self-explanatory.

Invalid probability bounds for app_style test/group
Self-explanatory.

Invalid probability bounds for solve_style group
Self-explanatory.

Invalid probability delta for app_style test/group
Self-explanatory.

Invalid region style
Self-explanatory.

Invalid site ID in Sites section of data file
Self-explanatory.

Invalid syntax in variable formula
Self-explanatory.

Invalid value setting in diag_style erbium
UNDOCUMENTED

Invalid variable evaluation in variable formula
A variable used in a formula could not be evaluated.

Invalid variable in next command
Self-explanatory.

Invalid variable name
Variable name used in an input script line is invalid.

Invalid variable name in variable formula
Variable name is not recognized.

Invalid variable style with next command
Variable styles equal and world cannot be used in a next command.

Invalid volume setting
Volume must be set to value > 0.

KMC events are not implemented in app
Not every application supports KMC solvers.

LINK MISMATCH
UNDOCUMENTED

Label wasn't found in input script
Self-explanatory.

Lattice command before app_style set
Self-explanatory.
Lattice style does not match dimension
Self-explanatory.
Log of zero/negative in variable formula
Self-explanatory.
MPI_SPK_BIGINT and bigint in spktype.h are not compatible
UNDOCUMENTED
MPI_SPK_TAGINT and tagint in spktype.h are not compatible
UNDOCUMENTED
Mask logic not implemented in app
Not every application supports masking.
Mismatch in counting for dbufclust
Self-explanatory.
Must read Sites before Neighbors
Self-explanatory.
Must use -in switch with multiple partitions
A multi-partition simulation cannot read the input script from stdin. The -in command-line option must be
used to specify a file.
Must use value option before basis option in create_sites command
Self-explanatory.
No Neighbors defined in site file
UNDOCUMENTED
No Sites defined in site file
UNDOCUMENTED
No reactions defined for chemistry app
Use the add_reaction command to specify one or more reactions.
No solver class defined
Self-explanatory.
Off-lattice application data file cannot have maxneigh setting
UNDOCUMENTED
One or more Hamiltonian params are unset
UNDOCUMENTED
One or more sites have invalid values
The application only allows sites to be initialized with specific values.
PBC remap of site failed
Internal SPPARKS error.
Pair_coeff command before app_style set
Self-explanatory.
Pair_coeff command before pair_style is defined
Self-explanatory.
Pair_style command before app_style set
Self-explanatory.
Per-processor solve tree is too big
UNDOCUMENTED
Per-processor system is too big
UNDOCUMENTED
Periodic box is not a multiple of lattice spacing
UNDOCUMENTED
Power by 0 in variable formula
Self-explanatory.
Processor partitions are inconsistent

39

The total number of processors in all partitions must match the number of processors LAMMPS is
running on.

Processors command after simulation box is defined
Self-explanatory.

Random lattice has no connectivity
The cutoff distance is likely too short.

Reaction ID %s already exists
Cannot re-define a reaction.

Reaction cannot have more than MAX_PRODUCT products
Self-explanatory.

Reaction has no numeric rate
Self-explanatory.

Reaction must have 0, 1,2 reactants
Self-explanatory.

Read_sites command before app_style set
Self-explanatory.

Region ID for dump text does not exist
UNDOCUMENTED

Region command before app_style set
Self-explanatory.

Region intersect region ID does not exist
Self-explanatory.

Region union region ID does not exist
Self-explanatory.

Rejection events are not implemented in app
Self-explanatory.

Reset_time command before app_style set
Self-explanatory.

Reuse of dump ID
UNDOCUMENTED

Reuse of region ID
Self-explanatory.

Run command before app_style set
Self-explanatory.

Run upto value is before current time
Self-explanatory.

SITE MISMATCH
UNDOCUMENTED

SITES NOT IN BINS
UNDOCUMENTED

Seed command has not been used
The seed command must be used if another command requires random numbers.

Set command before sites exist
Self-explanatory.

Set command region ID does not exist
Self-explanatory.

Set if test on quantity application does not support
The application defines what variables it supports. You cannot do an if test with the set command on a
variable that isn't supported.

Setting a quantity application does not support
The application defines what variables it supports. You cannot set a variable with the set command on a
variable that isn't supported.

40

Site file has no Sites, Neighbors, or Values

UNDOCUMENTED

Site not in my bin domain
Internal SPPARKS error.

Site-site interaction was not found
Internal SPPARKS error.

Smallint setting in spktype.h is invalid
UNDOCUMENTED

Solve_style command before app_style set
Self-explanatory.

Species ID %s already exists
Self-explanatory.

Species ID %s does not exist
Self-explanatory.

Sqrt of negative in variable formula
Self-explanatory.

Stats command before app_style set
Self-explanatory.

Substitution for illegal variable
Self-explanatory.

System in site file is too big
UNDOCUMENTED

Tagint setting in spktype.h is invalid
UNDOCUMENTED

Temperature cannot be 0.0 for app erbium
UNDOCUMENTED

Threshold for a quantity application does not support
The application defines what variables it supports. You cannot do a threshold test with the dump
command on a variable that isn't supported.
Too many neighbors per site
Internal SPPARKS error.
Unbalanced quotes in input line
No matching end double quote was found following a leading double quote.
Undump command before app_style set
Self-explanatory.
Unexpected end of data file
Self-explanatory.
Universe/uloop variable count < # of partitions
A universe or uloop style variable must specify a number of values >= to the number of processor
partitions.
Unknown command: %s
The command is not known to SPPARKS. Check the input script.
Unknown identifier in data file: %s
Self-explanatory.
Unknown species in reaction command
Self-explanatory.
Unrecognized command
The command is assumed to be application specific, but is not known to SPPARKS. Check the input
script.
Use of region with undefined lattice
The lattice command must be used before defining a geometric region.
Variable for dump image center is invalid style

41

UNDOCUMENTED
Variable for dump image persp is invalid style

UNDOCUMENTED

Variable for dump image phi is invalid style
UNDOCUMENTED

Variable for dump image theta is invalid style
UNDOCUMENTED

Variable for dump image zoom is invalid style
UNDOCUMENTED

Variable name for dump image center does not exist
UNDOCUMENTED

Variable name for dump image persp does not exist
UNDOCUMENTED

Variable name for dump image phi does not exist
UNDOCUMENTED

Variable name for dump image theta does not exist
UNDOCUMENTED

Variable name for dump image zoom does not exist
UNDOCUMENTED

Variable name must be alphanumeric or underscore characters
Self-explanatory.

World variable count doesn't match # of partitions
A world-style variable must specify a number of values equal to the number of processor partitions.

Warnings:

%d propensities were reset to hi value, max hi = %g
UNDOCUMENTED

%d propensities were reset to lo value, max lo = %g
UNDOCUMENTED

Using dump image boundary with spheres
UNDOCUMENTED

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

43

https://spparks.github.io

SPPARKS Documentation
27 Nov 2024 version
Version info:

The SPPARKS "version" is the date when it was released, such as 12 Jun 2018. SPPARKS is updated
continuously. Whenever we fix a bug or add a feature, we release it immediately, and post a notice on this page of
the WWW site. Each dated copy of SPPARKS contains all the features and bug-fixes up to and including that
version date. The version date is printed to the screen and logfile every time you run SPPARKS. It is also in the
file src/version.h and in the SPPARKS directory name created when you unpack a tarball.

¢ If you browse the HTML or PDF doc pages on the SPPARKS WWW site, they always describe the most
current version of SPPARKS.
¢ If you browse the HTML or PDF doc pages included in your tarball, they describe the version you have.

SPPARKS stands for Stochastic Parallel PARticle Kinetic Simulator.

SPPARKS is a kinetic Monte Carlo (KMC) code designed to run efficiently on parallel computers using both
KMC and Metropolis Monte Carlo algorithms. It was developed at Sandia National Laboratories, a US
Department of Energy facility, with funding from the DOE. It is an open-source code, distributed freely under the
terms of the GNU Public License (GPL), or sometimes by request under the terms of the GNU Lesser General
Public License (LGPL).

The SPPARKS website has more information about the code and publications that desribe it. The current
SPPARKS developers are John Mitchell (Sandia National Labs) and Steve Plimpton. They can be contacted at
jamitch@sandia.gov and sjplimp@gmail.com respectively. Past developers and other significant code
contributores are listed on the Authors page of the website.

The SPPARKS documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to the developers so we can
improve the SPPARKS documentation.

Once you are familiar with SPPARKS, you may want to bookmark this page at Section_commands.html#comm
since it gives quick access to documentation for all SPPARKS commands.

PDF file of the entire manual, generated by htmldoc

1. Introduction
1.1 What is SPPARKS
1.2 SPPARKS features
1.3 Open source distribution
1.4 Acknowledgments and citations
2. Getting started
2.1 What's in the SPPARKS distribution
2.2 Making SPPARKS
2.3 Making SPPARKS with optional packages
2.4 Building SPPARKS as a library
2.5 Running SPPARKS
2.6 Command-line options
2.7 SPPARKS screen output
3. Commands

44

https://spparks.github.io/bug.html
https://spparks.github.io/bug.html
https://spparks.github.io
https://sjplimp.github.io
https://spparks.github.io/authors.html
http://freecode.com/projects/htmldoc

4.

O 0 3 O\ D

10.

11.

3.1 SPPARKS input script

3.2 Parsing rules

3.3 Input script structure

3.4 Commands listed by category
3.5 Commands listed alphabetically
How-to discussions

4.1 Running multiple simulations from one input script

4.2 Coupling SPPARKS to other codes
4.3 Library interface to SPPARKS

. Example problems

. Performance & scalability

. Additional tools

. Modifying & Extending SPPARKS
. Python interface

9.1 Building SPPARKS as a shared library

9.2 Installing the Python wrapper into Python
9.3 Extending Python with MPI to run in parallel
9.4 Testing the Python-SPPARKS interface
9.5 Using SPPARKS from Python

9.6 Example Python scripts that use SPPARKS
Errors

10.1 Common problems

10.2 Reporting bugs

10.3 Error & warning messages

Future plans

45

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

3. Commands

This section describes how a SPPARKS input script is formatted and what commands are used to define a
simulation.

3.1 SPPARKS input script

3.2 Parsing rules

3.3 Input script structure

3.4 Commands listed by category
3.5 Commands listed alphabetically

3.1 SPPARKS input script

SPPARKS executes by reading commands from a input script (text file), one line at a time. When the input script
ends, SPPARKS exits. Each command causes SPPARKS to take some action. It may set an internal variable, read
in a file, or run a simulation. Most commands have default settings, which means you only need to use the
command if you wish to change the default.

In many cases, the ordering of commands in an input script is not important. However the following rules apply:
(1) SPPARKS does not read your entire input script and then perform a simulation with all the settings. Rather,

the input script is read one line at a time and each command takes effect when it is read. Thus this sequence of
commands:

count ligand 10000
run 100
run 100

does something different than this sequence:

run 100
count ligand 10000
run 100

In the first case, the count of ligand molecules is set to 10000 before the first simulation and whatever the count
becomes will be used as input for the second simulation. In the 2nd case, the default count of O is used for the 1st
simulation and then the count is set to 10000 molecules before the second simulation.

(2) Some commands are only valid when they follow other commands. For example you cannot set the count of a
molecular species until the add_species command has been used to define that species.

(3) Sometimes command B will use values that can be set by command A. This means command A must precede
command B in the input script if it is to have the desired effect.

(4) Some commands are only used by a specific application(s).
Many input script errors are detected by SPPARKS and an ERROR or WARNING message is printed. This

section gives more information on what errors mean. The documentation for each command lists restrictions on
how the command can be used.

46

https://spparks.github.io

3.2 Parsing rules

Each non-blank line in the input script is treated as a command. SPPARKS commands are case sensitive.
Command names are lower-case, as are specified command arguments. Upper case letters may be used in file
names or user-chosen ID strings.

Here is how each line in the input script is parsed by SPPARKS:

(1) If the line ends with a "&" character (with no trailing whitespace), the command is assumed to continue on the
next line. The next line is concatenated to the previous line by removing the "&" character and newline. This
allows long commands to be continued across two or more lines.

(2) All characters from the first "#" character onward are treated as comment and discarded.

(3) The line is searched repeatedly for $ characters which indicate variables that are replaced with a text string. If
the $ is followed by curly brackets, then the variable name is the text inside the curly brackets. If no curly
brackets follow the $, then the variable name is the character immediately following the $. Thus ${myTemp} and
$x refer to variable names "myTemp" and "x". See the variable command for details of how strings are assigned
to variables and how they are substituted for in input scripts.

(4) The line is broken into "words" separated by whitespace (tabs, spaces). Note that words can thus contain
letters, digits, underscores, or punctuation characters.

(5) The first word is the command name. All successive words in the line are arguments.
(6) Text with spaces can be enclosed in double quotes so it will be treated as a single argument. See the dump

modify or fix print commands for examples. A '# or '$' character that in text between double quotes will not be
treated as a comment or substituted for as a variable.

3.3 Input script structure
This section describes the structure of a typical SPPARKS input script. The "examples" directory in the
SPPARKS distribution contains sample input scripts; the corresponding problems are discussed in this section,
and some are animated on the SPPARKS website.
A SPPARKS input script typically has 3 parts:

¢ choice of application, solver, sweeper

® settings

¢ run a simulation
The last 2 parts can be repeated as many times as desired. L.e. run a simulation, change some settings, run some
more, etc. Each of the 3 parts is now described in more detail. Remember that almost all the commands need only
be used if a non-default value is desired.
(1) Choice of application, solver, sweep method
Use the app_style, solve_style, and sweep commands to setup the kind of simulation you wish to run. Note that
sweeping is only relevant to applications that define a geometric lattice of event sites and only if you wish to

perform rejection kinetic Monte Carlo updates.

(2) Settings

47

https://spparks.github.io

Parameters for a simulation can be defined by application-specific commands or by generic commands that are
common to many kinds of applications. See the doc pages for individual applications for information on the
former. Examples of the latter are the stats and temperature commands.

The diag_style command can also be used to setup various diagnostic computations to perform during a
simulation.

(3) Run a simulation

A kinetic or Metropolis Monte Carlo simulation is performed using the run command.

3.4 Commands listed by category

This section lists all SPPARKS commands, grouped by category. The next section lists the same commands
alphabetically. Note that some commands are only usable with certain applications. Also, some style options for
some commands are part of specific SPPARKS packages, which means they cannot be used unless the package
was included when SPPARKS was built. Not all packages are included in a default SPPARKS build. These
dependencies are listed as Restrictions in the command's documentation.

Initialization commands:

app_style, create_box, create_sites, processors, read_sites, region, solve_style

Setting commands:

dimension, boundary, lattice, pair_coeff, pair_style, reset_time, sector, seed, sweep, set

Application-specific commands:

add_reaction, add_species, barrier, count, deposition, ecoord, inclusion, pin, temperature, volume

Output commands:

diag_style, dump, dump image, dump_modify, dump_one, stats, undump

Actions:

run,

Miscellaneous:

clear, echo, if, include, jump, label, log, next, print, shell, variable

3.5 Individual commands

This section lists all SPPARKS commands alphabetically, with a separate listing below of styles within certain
commands. The previous section lists the same commands, grouped by category. Note that commands which are
only usable with certain applications are listed in the next section.

app_style

boundary

clear

create_box

create_sites

diag_style

dimension

dump

dump image

dump_modify

dump_one

echo

48

if include jump label lattice log
next | pair_coeff | pair_style print processors |read_sites
region |reset_time run sector seed set
shell |solve_style stats sweep undump | variable

Application-specific commands. These are commands defined only for use by one or more applications. See the
command doc page for details. See the various app_style commands in the next section for a listing of all the
commands defined for individual applications.

add_reaction add_species am_build |am cartesian_layer am pass am path
am path_layer am pathgen barrier count deep_length deep_width
deposition |diffusion/multiphase| ecoord elliopsoid_depth event inclusion
pin pulse temperature volume weld_shape_ellipse|weld_shape_teardrop

Application styles. See the app_style command for one-line descriptions of each style or click on the style itself
for a full description:

am/ellipsoid chemistry diffusion |diffusion/multiphase erbium ising ising/single| membrane
phasefield/potts potts potts/am/bezier| potts/am/path/gen [potts/am/weld| potts/grad |potts/neigh |potts/neighonly
potts/pin potts/quaternion| potts/strain potts/strain/pin potts/weld |potts/weld/jom| relax sinter
S0S test/group

Solve styles. See the solve_style command for one-line descriptions of each style or click on the style itself for a

full description:

| group |linear |tree |

Pair styles. See the pair_style command for one-line descriptions of each style or click on the style itself for a full

description:

Diagnostic styles. See the diag_style command for one-line descriptions of each style or click on the style itself
for a full description:

array

cluster

diffusion

energy

erbium |propensity

sinter_avg_

neck_area|sinter_den

sity

sinter_free_energy_pore

sinter_por €_curvature

49

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

9. Errors

This section describes the various kinds of errors you can encounter when using SPPARKS.

10.1 Common problems
10.2 Reporting bugs
10.3 Error & warning messages

9.1 Common problems

A SPPARKS simulation typically has two stages, setup and run. Many SPPARKS errors are detected at setup
time; others may not occur until the middle of a run.

SPPARKS tries to flag errors and print informative error messages so you can fix the problem. Of course
SPPARKS cannot figure out your physics mistakes, like choosing too big a timestep or setting up an invalid
lattice. If you find errors that SPPARKS doesn't catch that you think it should flag, please send an email to the
developers.

If you get an error message about an invalid command in your input script, you can determine what command is
causing the problem by looking in the log.spparks file or using the echo command to see it on the screen. For
example you can run your script as

spk_linux -echo screen <in.script

For a given command, SPPARKS expects certain arguments in a specified order. If you mess this up, SPPARKS
will often flag the error, but it may read a bogus argument and assign a value that is not what you wanted. E.g. if
the input parser reads the string "abc" when expecting an integer value, it will assign the value of 0 to a variable.

Generally, SPPARKS will print a message to the screen and exit gracefully when it encounters a fatal error.
Sometimes it will print a WARNING and continue on; you can decide if the WARNING is important or not. If
SPPARKS crashes or hangs without spitting out an error message first then it could be a bug (see this section) or
one of the following cases:

SPPARKS runs in the available memory each processor can allocate. All large memory allocations in the code are
done via C-style malloc's which will generate an error message if you run out of memory. Smaller chunks of
memory are allocated via C++ "new" statements. If you are unlucky you could run out of memory when one of
these small requests is made, in which case the code will crash, since SPPARKS doesn't trap on those errors.

[llegal arithmetic can cause SPPARKS to run slow or crash. This is typically due to invalid physics and numerics
that your simulation is computing. If you see wild energy values or NaN values in your SPPARKS output,
something is wrong with your simulation.

In parallel, one way SPPARKS can hang is due to how different MPI implementations handle buffering of
messages. If the code hangs without an error message, it may be that you need to specify an MPI setting or two
(usually via an environment variable) to enable buffering or boost the sizes of messages that can be buffered.

50

https://spparks.github.io

9.2 Reporting bugs
If you are confident that you have found a bug in SPPARKS, please send an email to the developers.

First, check the "New features and bug fixes" section of the SPPARKS WWW site to see if the bug has already
been reported or fixed.

If not, the most useful thing you can do for us is to isolate the problem. Run it on the smallest problem and fewest
number of processors and with the simplest input script that reproduces the bug.

In your email, describe the problem and any ideas you have as to what is causing it or where in the code the
problem might be. We'll request your input script and data files if necessary.

9.3 Error & warning messages

These are two alphabetic lists of the ERROR and WARNING messages SPPARKS prints out and the reason why.
If the explanation here is not sufficient, the documentation for the offending command may help. Grepping the
source files for the text of the error message and staring at the source code and comments is also not a bad idea!
Note that sometimes the same message can be printed from multiple places in the code.

Errors:

Adding site to bin it is not in
Internal SPPARKS error.
Adding site to illegal bin
Internal SPPARKS error.
All pair coeffs are not set
Self-explanatory.
All universe/uloop variables must have same # of values
Self-explanatory.
All variables in next command must be same style
Self-explanatory.
Another input script is already being processed
Cannot attempt to open a 2nd input script, when the original file is still being processed.
App cannot use both a KMC and rejection KMC solver
You cannot define both a solver and sweep option.
App did not set dt_sweep
Internal SPPARKS error.
App does not permit user_update yes
UNDOCUMENTED
App needs a KMC or rejection KMC solver
You must define either a solver or sweep option.
App relax requires a pair potential
Self-explanatory.
App style proc count is not valid for 1d simulation
There can only be 1 proc in y and z dimensions for 1d models.
App style proc count is not valid for 2d simulation
There can only be 1 proc in the z dimension for 2d models.
App_style command after simulation box is defined
Self-explanatory.
App_style specific command before app_style set
Self-explanatory.

51

https://spparks.github.io

Application cutoff is too big for processor sub-domain
There must be at least 2 bins per processor in each dimension where sectoring occurs.
Arccos of invalid value in variable formula
Argument of arccos() must be between -1 and 1.
Arcsin of invalid value in variable formula
Argument of arcsin() must be between -1 and 1.
BAD DONE
UNDOCUMENTED
BAD STENCIL
UNDOCUMENTED
BIN MISMATCH
UNDOCUMENTED
Bad neighbor site ID
UNDOCUMENTED
Bigint setting in spktype.h is invalid
UNDOCUMENTED
Boundary command after simulation box is defined
UNDOCUMENTED
Boundary command currently only supported by on-lattice apps
UNDOCUMENTED
Box bounds are invalid
Lo bound >= hi bound.
COUNT MISMATCH
UNDOCUMENTED
Can only read Neighbors for on-lattice applications
UNDOCUMENTED
Can only use ecoord command with app_style diffusion nonlinear
Self-explanatory.
Cannot color this combination of lattice and app

Coloring is not supported on this lattice for the neighbor dependencies of this application.

Cannot color without a lattice definition of sites
UNDOCUMENTED

Cannot color without contiguous site IDs
UNDOCUMENTED

Cannot create box after simulation box is defined
Self-explanatory.

Cannot create box with this application style
This application does not support spatial domains.

Cannot create sites after sites already exist
Self-explanatory.

Cannot create sites with undefined lattice
Must use lattice commands first to define a lattice.

Cannot create/grow a vector/array of pointers for %s
UNDOCUMENTED

Cannot define Schwoebel barrier without Schwoebel model
Self-explanatory.

Cannot dump JPG file
UNDOCUMENTED

Cannot open diag style cluster dump file
Self-explanatory.

Cannot open diag_style cluster dump file
Self-explanatory.

52

Cannot open diag_style cluster output file
Self-explanatory.

Cannot open dump file
Self-explanatory.

Cannot open file %s
Self-explanatory.

Cannot open gzipped file
Self-explantory.

Cannot open input script %s
Self-explanatory.

Cannot open log.spparks
Self-explanatory.

Cannot open logfile
Self-explanatory.

Cannot open logfile %s
Self-explanatory.

Cannot open screen file
The screen file specified as a command-line argument cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot open universe log file
For a multi-partition run, the master log file cannot be opened. Check that the directory you are running in
allows for files to be created.

Cannot open universe screen file
For a multi-partition run, the master screen file cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot perform deposition in parallel
UNDOCUMENTED

Cannot perform deposition with multiple sectors
UNDOCUMENTED

Cannot read Neighbors after sites already exist
UNDOCUMENTED

Cannot read Neighbors unless max neighbors is set
UNDOCUMENTED

Cannot read Sites after sites already exist
UNDOCUMENTED

Cannot read Values before sites exist or are read
UNDOCUMENTED

Cannot redefine variable as a different style
An equal-style variable can be re-defined but only if it was originally an equal-style variable.

Cannot run 1d simulation with nonperiodic Y or Z dimension
UNDOCUMENTED

Cannot run 2d simulation with nonperiodic Z dimension
UNDOCUMENTED

Cannot run application until simulation box is defined
Self-explanatory.

Cannot use %s command until sites exist
This command requires sites exist before using it in an input script.

Cannot use KMC solver in parallel with no sectors
Self-explanatory.

Cannot use color/strict rejection KMC with sectors
Self-explanatory.

Cannot use coloring without domain nx,ny,nz defined

53

UNDOCUMENTED
Cannot use create_sites basis with random lattice
Self-explanatory.
Cannot use diag_style cluster without a lattice defined
This diagnostic uses the lattice style to dump OpenDx files.
Cannot use dump_one for first snapshot in dump file
Self-explanatory.
Cannot use random rejection KMC in parallel with no sectors
Self-explanatory.
Cannot use raster rejection KMC in parallel with no sectors
Self-explanatory.
Cannot use region INF or EDGE when box does not exist
Can only define a region with these parameters after a simulation box has been defined.
Choice of sector stop led to no rKMC events
Self-explanatory.
Color stencil is incommensurate with lattice size
Since coloring induces a pattern of colors, this pattern must fit an integer number of times into a periodic

lattice.

Could not find dump ID in dump_modify command
Self-explanatory.

Could not find dump ID in dump_one command
Self-explanatory.

Could not find dump ID in undump command
Self-explanatory.

Create_box command before app_style set
Self-explanatory.

Create_box region ID does not exist
Self-explanatory.

Create_box region must be of type inside
Self-explanatory.

Create_sites command before app_style set
Self-explanatory.

Create_sites command before simulation box is defined
Self-explanatory.

Create_sites region ID does not exist
Self-explanatory.

Creating a quantity application does not support
The application defines what variables it supports. You cannot set a variable with the create_sites
command for a variable that isn't supported.

Data file dimension does not match existing box
UNDOCUMENTED

Data file maxneigh setting does not match existing sites
UNDOCUMENTED

Data file number of sites does not match existing sites
UNDOCUMENTED

Data file simluation box different that current box
UNDOCUMENTED

Diag cluster does not work if ncluster > 2°31
UNDOCUMENTED

Diag cluster dvalue in neighboring clusters do not match
Internal SPPARKS error.

Diag cluster ivalue in neighboring clusters do not match

54

Internal SPPARKS error.
Diag propensity requires KMC solve be performed
Only KMC solvers compute a propensity for sites and the system.
Diag style cluster dump file name too long
Self-explanatory.
Diag style incompatible with app style
The lattice styles of the diagnostic and the on-lattice application must match.
Diag_style cluster incompatible with lattice style
UNDOCUMENTED
Diag_style cluster nx,ny,nz = 0
UNDOCUMENTED
Diag_style command before app_style set
Self-explanatory.
Diag_style diffusion requires app_style diffusion
Self-explanatory.
Diag_style erbium requires app_style erbium
UNDOCUMENTED

Did not assign all sites correctly

One or more sites in the read_sites file were not assigned to a processor correctly.

Did not create correct number of sites
One or more created sites were not assigned to a processor correctly.

Did not reach event propensity threshhold
UNDOCUMENTED

Dimension command after lattice is defined
Self-explanatory.

Dimension command after simulation box is defined
Self-explanatory.

Divide by 0 in variable formula
Self-explanatory.

Dump command before app_style set
Self-explanatory.

Dump command can only be used for spatial applications
Self-explanatory.

Dump image boundary requires lattice app
UNDOCUMENTED

Dump image crange must be set
UNDOCUMENTED

Dump image drange must be set
UNDOCUMENTED

Dump image persp option is not yet supported
UNDOCUMENTED

Dump image requires one snapshot per file
UNDOCUMENTED

Dump image with quantity application does not support
UNDOCUMENTED

Dump requires propensity but no KMC solve performed
Only KMC solvers compute propensity for sites.

Dump_modify command before app_style set
Self-explanatory.

Dump_modify region ID does not exist
UNDOCUMENTED

Dump_modify scolor requires integer attribute for dump image color

55

UNDOCUMENTED
Dump_modify sdiam requires integer attribute for dump image diameter
UNDOCUMENTED
Dump_one command before app_style set
Self-explanatory.
Dumping a quantity application does not support
The application defines what variables it supports. You cannot output a variable in a dump that isn't
supported.
Failed to allocate %ld bytes for array %s
Your SPPARKS simulation has run out of memory. You need to run a smaller simulation or on more
processors.
Failed to reallocate %ld bytes for array %s
Your SPPARKS simulation has run out of memory. You need to run a smaller simulation or on more
processors.
GHOST IN OWNED BIN
UNDOCUMENTED
Ghost connection was not found
Internal SPPARKS error. Should not occur.
Ghost site was not found
Internal SPPARKS error. Should not occur.
lllegal ... command
Self-explanatory. Check the input script syntax and compare to the documentation for the command. You
can use -echo screen as a command-line option when running SPPARKS to see the offending line.
Incorrect args for pair coefficients
Self-explanatory.
Incorrect lattice neighbor count
Internal SPPARKS error.
Incorrect site format in data file
Self-explanatory.
Incorrect value format in data file
Self-explanatory.
Input line too long after variable substitution
This is a hard (very large) limit defined in the input.cpp file.
Input line too long: %s
This is a hard (very large) limit defined in the input.cpp file.
Invalid attribute in dump text command
UNDOCUMENTED
Invalid color in dump_modify command
UNDOCUMENTED
Invalid command-line argument
One or more command-line arguments is invalid. Check the syntax of the command you are using to
launch SPPARKS.
Invalid diag_style command
UNDOCUMENTED
Invalid dump image filename
UNDOCUMENTED
Invalid dump image persp value
UNDOCUMENTED
Invalid dump image theta value
UNDOCUMENTED
Invalid dump image zoom value

UNDOCUMENTED

56

Invalid dump style
UNDOCUMENTED

Invalid dump_modify threshold operator
Self-explanatory.

Invalid event count for app_style test/group
Number of events must be > 0.

Invalid image color range
UNDOCUMENTED

Invalid image up vector
UNDOCUMENTED

Invalid keyword in dump command
Self-explanatory.

Invalid keyword in variable formula
UNDOCUMENTED

Invalid math function in variable formula
The math function is not recognized.

Invalid number of sectors
Self-explanatory.

Invalid pair style
Self-explanatory.

Invalid probability bounds for app_style test/group
Self-explanatory.

Invalid probability bounds for solve_style group
Self-explanatory.

Invalid probability delta for app_style test/group
Self-explanatory.

Invalid region style
Self-explanatory.

Invalid site ID in Sites section of data file
Self-explanatory.

Invalid syntax in variable formula
Self-explanatory.

Invalid value setting in diag_style erbium
UNDOCUMENTED

Invalid variable evaluation in variable formula
A variable used in a formula could not be evaluated.

Invalid variable in next command
Self-explanatory.

Invalid variable name
Variable name used in an input script line is invalid.

Invalid variable name in variable formula
Variable name is not recognized.

Invalid variable style with next command
Variable styles equal and world cannot be used in a next command.

Invalid volume setting
Volume must be set to value > 0.

KMC events are not implemented in app
Not every application supports KMC solvers.

LINK MISMATCH
UNDOCUMENTED

Label wasn't found in input script
Self-explanatory.

Lattice command before app_style set
Self-explanatory.
Lattice style does not match dimension
Self-explanatory.
Log of zero/negative in variable formula
Self-explanatory.
MPI_SPK_BIGINT and bigint in spktype.h are not compatible
UNDOCUMENTED
MPI_SPK_TAGINT and tagint in spktype.h are not compatible
UNDOCUMENTED
Mask logic not implemented in app
Not every application supports masking.
Mismatch in counting for dbufclust
Self-explanatory.
Must read Sites before Neighbors
Self-explanatory.
Must use -in switch with multiple partitions
A multi-partition simulation cannot read the input script from stdin. The -in command-line option must be
used to specify a file.
Must use value option before basis option in create_sites command
Self-explanatory.
No Neighbors defined in site file
UNDOCUMENTED
No Sites defined in site file
UNDOCUMENTED
No reactions defined for chemistry app
Use the add_reaction command to specify one or more reactions.
No solver class defined
Self-explanatory.
Off-lattice application data file cannot have maxneigh setting
UNDOCUMENTED
One or more Hamiltonian params are unset
UNDOCUMENTED
One or more sites have invalid values
The application only allows sites to be initialized with specific values.
PBC remap of site failed
Internal SPPARKS error.
Pair_coeff command before app_style set
Self-explanatory.
Pair_coeff command before pair_style is defined
Self-explanatory.
Pair_style command before app_style set
Self-explanatory.
Per-processor solve tree is too big
UNDOCUMENTED
Per-processor system is too big
UNDOCUMENTED
Periodic box is not a multiple of lattice spacing
UNDOCUMENTED
Power by 0 in variable formula
Self-explanatory.
Processor partitions are inconsistent

58

The total number of processors in all partitions must match the number of processors LAMMPS is
running on.

Processors command after simulation box is defined
Self-explanatory.

Random lattice has no connectivity
The cutoff distance is likely too short.

Reaction ID %s already exists
Cannot re-define a reaction.

Reaction cannot have more than MAX_PRODUCT products
Self-explanatory.

Reaction has no numeric rate
Self-explanatory.

Reaction must have 0, 1,2 reactants
Self-explanatory.

Read_sites command before app_style set
Self-explanatory.

Region ID for dump text does not exist
UNDOCUMENTED

Region command before app_style set
Self-explanatory.

Region intersect region ID does not exist
Self-explanatory.

Region union region ID does not exist
Self-explanatory.

Rejection events are not implemented in app
Self-explanatory.

Reset_time command before app_style set
Self-explanatory.

Reuse of dump ID
UNDOCUMENTED

Reuse of region ID
Self-explanatory.

Run command before app_style set
Self-explanatory.

Run upto value is before current time
Self-explanatory.

SITE MISMATCH
UNDOCUMENTED

SITES NOT IN BINS
UNDOCUMENTED

Seed command has not been used
The seed command must be used if another command requires random numbers.

Set command before sites exist
Self-explanatory.

Set command region ID does not exist
Self-explanatory.

Set if test on quantity application does not support
The application defines what variables it supports. You cannot do an if test with the set command on a
variable that isn't supported.

Setting a quantity application does not support
The application defines what variables it supports. You cannot set a variable with the set command on a
variable that isn't supported.

59

Site file has no Sites, Neighbors, or Values

UNDOCUMENTED

Site not in my bin domain
Internal SPPARKS error.

Site-site interaction was not found
Internal SPPARKS error.

Smallint setting in spktype.h is invalid
UNDOCUMENTED

Solve_style command before app_style set
Self-explanatory.

Species ID %s already exists
Self-explanatory.

Species ID %s does not exist
Self-explanatory.

Sqrt of negative in variable formula
Self-explanatory.

Stats command before app_style set
Self-explanatory.

Substitution for illegal variable
Self-explanatory.

System in site file is too big
UNDOCUMENTED

Tagint setting in spktype.h is invalid
UNDOCUMENTED

Temperature cannot be 0.0 for app erbium
UNDOCUMENTED

Threshold for a quantity application does not support
The application defines what variables it supports. You cannot do a threshold test with the dump
command on a variable that isn't supported.
Too many neighbors per site
Internal SPPARKS error.
Unbalanced quotes in input line
No matching end double quote was found following a leading double quote.
Undump command before app_style set
Self-explanatory.
Unexpected end of data file
Self-explanatory.
Universe/uloop variable count < # of partitions
A universe or uloop style variable must specify a number of values >= to the number of processor
partitions.
Unknown command: %s
The command is not known to SPPARKS. Check the input script.
Unknown identifier in data file: %s
Self-explanatory.
Unknown species in reaction command
Self-explanatory.
Unrecognized command
The command is assumed to be application specific, but is not known to SPPARKS. Check the input
script.
Use of region with undefined lattice
The lattice command must be used before defining a geometric region.
Variable for dump image center is invalid style

60

UNDOCUMENTED
Variable for dump image persp is invalid style

UNDOCUMENTED

Variable for dump image phi is invalid style
UNDOCUMENTED

Variable for dump image theta is invalid style
UNDOCUMENTED

Variable for dump image zoom is invalid style
UNDOCUMENTED

Variable name for dump image center does not exist
UNDOCUMENTED

Variable name for dump image persp does not exist
UNDOCUMENTED

Variable name for dump image phi does not exist
UNDOCUMENTED

Variable name for dump image theta does not exist
UNDOCUMENTED

Variable name for dump image zoom does not exist
UNDOCUMENTED

Variable name must be alphanumeric or underscore characters
Self-explanatory.

World variable count doesn't match # of partitions
A world-style variable must specify a number of values equal to the number of processor partitions.

Warnings:

%d propensities were reset to hi value, max hi = %g
UNDOCUMENTED

%d propensities were reset to lo value, max lo = %g
UNDOCUMENTED

Using dump image boundary with spheres
UNDOCUMENTED

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

5. Example problems

The SPPARKS distribution includes an examples sub-directory with several sample problems. Each problem is in
a sub-directory of its own. Most are small models that can be run quickly, requiring at most a couple of minutes to
run on a desktop machine. Each problem has an input script (in.*) and produces a log file (log.*) and dump file
(dump.*) when it runs. A few sample log file outputs on different machines and different numbers of processors
are included in the directories to compare your answers to. E.g. a log file like log.potts.foo.P means it ran on P
processors of machine "foo".

In some cases, the dump files produced by the example runs can be animated using the various visuzlization tools,
such as the Pizza.py toolkit referenced in the Additional Tools section of the SPPARKS documentation.

Animations of some of these examples can be viewed on the Movies section of the SPPARKS WWW Site.

These are the sample problems in the examples sub-directories:

groups test of group-based KMC solver

ising standard Ising model

membrane [membrane model of pore formation around protein inclusions

potts multi-state Potts model for grain growth

Here is how you might run and visualize one of the sample problems:

cd examples/potts
cp ../../src/spk_linux . # copy SPPARKS executable to this dir
spk_linux <in.potts # run the problem

Running the simulation produces the files dump.potts and log.spparks.

If you add dump image line(s) to the input script a series of JPG images will be produced by the run. These can be
viewed individually or turned into a movie or animated by tools like ImageMagick or QuickTime or various
Windows-based tools. See the dump image doc page for more details. E.g. this Imagemagick command would
create a GIF file suitable for viewing in a browser.

% convert -loop 1 *.Jjpg foo.gif

There is also a COUPLE directory with examples of how to use SPPARKS as a library, either by itself or in
tandem with another code or library. See the COUPLE/README file to get started.

62

https://spparks.github.io
https://spparks.github.io

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

10. Future plans

This section lists MC applications and features we are planning to add to SPPARKS. You can send an email to the
developers if you are interested in any of these topics.

e off-lattice surface growth and diffusion

¢ chemical vapor deposition

e clectromigration (Kristi Harris, UMBC)
¢ nanoporous aging (Greg Wagner, Sandia)
® pore migration (Veena Tikare, Sandia)

63

https://spparks.github.io

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

4. How-to discussions

The following sections describe how to perform various operations in SPPARKS.
4.1 Running multiple simulations from one input script

4.2 Coupling SPPARKS to other codes

4.3 Library interface to SPPARKS

The example input scripts included in the SPPARKS distribution and highlighted in this section also show how to
setup and run various kinds of problems.

4.1 Running multiple simulations from one input script

This can be done in several ways. See the documentation for individual commands for more details on how these
examples work.

If "multiple simulations" means continue a previous simulation for more timesteps, then you simply use the run
command multiple times. For example, this script

app_style ising/2d/4n 100 100 12345

run 1.0
run 1.0
run 1.0
run 1.0
run 1.0

would run 5 successive simulations of the same system for a total of 5.0 seconds of elapsed time.

If you wish to run totally different simulations, one after the other, the clear command can be used in between
them to re-initialize SPPARKS. For example, this script

app_style ising/2d/4n 100 100 12345
run 1.0

clear

app_style ising/2d/4n 200 200 12345

run 1.0
would run 2 independent simulations, one after the other.

For large numbers of independent simulations, you can use variables and the next and jump commands to loop
over the same input script multiple times with different settings. For example, this script, named in.runs

variable d index runl run2 run3 rund4 run5 run6 run7 run8
shell cd $d

app_style ising/2d/4n 100 100 12345

include temperature.txt

run 1.0

shell cd ..

clear

next d

64

https://spparks.github.io

jump in.runs

would run 8 simulations in different directories, using a temperature.txt file in each directory with an input
command to set the temperature. The same concept could be used to run the same system at 8 different sizes,
using a size variable and storing the output in different log files, for example

variable a loop 8

variable size index 100 200 400 800 1600 3200 6400 10000
log log.${size}

app_style ising/2d/4n ${size} ${size} 12345

run 1.0

next size

next a

jump in.runs

All of the above examples work whether you are running on 1 or multiple processors, but assumed you are
running SPPARKS on a single partition of processors. SPPARKS can be run on multiple partitions via the
"-partition" command-line switch as described in this section of the manual.

In the last 2 examples, if SPPARKS were run on 3 partitions, the same scripts could be used if the "index" and
"loop" variables were replaced with universe-style variables, as described in the variable command. Also, the
"next size" and "next a" commands would need to be replaced with a single "next a size" command. With these
modifications, the 8 simulations of each script would run on the 3 partitions one after the other until all were
finished. Initially, 3 simulations would be started simultaneously, one on each partition. When one finished, that
partition would then start the 4th simulation, and so forth, until all 8 were completed.

4.2 Coupling SPPARKS to other codes

SPPARKS is designed to allow it to be coupled to other codes. For example, an atomistic code might relax atom
positions and pass those positions to SPPARKS. Or a continuum finite element (FE) simulation might use a
Monte Carlo relaxation to formulate a boundary condition on FE nodal points, compute a FE solution, and return
the results to the MC calculation.

SPPARKS can be coupled to other codes in at least 3 ways. Each has advantages and disadvantages, which you'll
have to think about in the context of your application.

(1) Define a new diag_style command that calls the other code. In this scenario, SPPARKS is the driver code.
During its timestepping, the diagnostic is invoked, and can make library calls to the other code, which has been
linked to SPPARKS as a library. See this section of the documentation for info on how to add a new diagnostic to
SPPARKS.

(2) Define a new SPPARKS command that calls the other code. This is conceptually similar to method (1), but in
this case SPPARKS and the other code are on a more equal footing. Note that now the other code is not called
during the even loop of a SPPARKS run, but between runs. The SPPARKS input script can be used to alternate
SPPARKS runs with calls to the other code, invoked via the new command.

In this scenario, the other code can be called as a library, as in (1), or it could be a stand-alone code, invoked by a
system() call made by the command (assuming your parallel machine allows one or more processors to start up
another program). In the latter case the stand-alone code could communicate with SPPARKS thru files that the

command writes and reads.

See this section of the documentation for how to add a new command to SPPARKS.

65

(3) Use SPPARKS as a library called by another code. In this case the other code is the driver and calls
SPPARKS as needed. Or a wrapper code could link and call both SPPARKS and another code as libraries.

Examples of driver codes that call SPPARKS as a library are included in the examples/COUPLE directory of the
SPPARKS distribution; see examples/COUPLE/README for more details:

¢ simple: simple driver programs in C++ and C which invoke SPPARKS as a library (NOTE: not yet
available)

¢ lammps_spparks: coupling of SPPARKS and LAMMPS, to couple a kinetic Monte Carlo model for grain
growth using MD to calculate strain induced across grain boundaries

This section of the documentation describes how to build SPPARKS as a library. Once this is done, you can
interface with SPPARKS either via C++, C, Fortran, or Python (or any other language that supports a vanilla
C-like interface). For example, from C++ you could create one (or more) "instances" of SPPARKS, pass it an
input script to process, or execute individual commands, all by invoking the correct class methods in SPPARKS.
From C or Fortran you can make function calls to do the same things. See Section_python of the manual for a
description of the Python wrapper provided with SPPARKS that operates through the SPPARKS library interface.

The files src/library.cpp and library.h contain the C-style interface to SPPARKS. See Section_howto 3 of the
manual for a description of the interface and how to extend it for your needs.

Note that the spparks_open() function that creates an instance of SPPARKS takes an MPI communicator as an
argument. This means that instance of SPPARKS will run on the set of processors in the communicator. Thus the
calling code can run SPPARKS on all or a subset of processors. For example, a wrapper script might decide to
alternate between SPPARKS and another code, allowing them both to run on all the processors. Or it might
allocate half the processors to SPPARKS and half to the other code and run both codes simultaneously before
syncing them up periodically. Or it might instantiate multiple instances of SPPARKS to perform different
calculations.

4.3 Library interface to SPPARKS

As described in Section_start 4, SPPARKS can be built as a library, so that it can be called by another code, used
in a coupled manner with other codes, or driven through a Python interface.

All of these methodologies use a C-style interface to SPPARKS that is provided in the files src/library.cpp and
src/library.h. The functions therein have a C-style argument list, but contain C++ code you could write yourself in
a C++ application that was invoking SPPARKS directly. The C++ code in the functions illustrates how to invoke
internal SPPARKS operations. Note that SPPARKS classes are defined within a SPPARKS namespace
(SPPARKS_NS) if you use them from another C++ application.

Library.cpp contains these 4 functions:

void spparks_open(int, char **, MPI_Comm, void **);
void spparks_close (void *);

void spparks_file(void *, char *);

char *spparks_command (void *, char *);

The spparks_open() function is used to initialize SPPARKS, passing in a list of strings as if they were
command-line arguments when SPPARKS is run in stand-alone mode from the command line, and a MPI
communicator for SPPARKS to run under. It returns a ptr to the SPPARKS object that is created, and which is
used in subsequent library calls. The spparks_open() function can be called multiple times, to create multiple
instances of SPPARKS.

66

https://www.lammps.org

SPPARKS will run on the set of processors in the communicator. This means the calling code can run SPPARKS
on all or a subset of processors. For example, a wrapper script might decide to alternate between SPPARKS and
another code, allowing them both to run on all the processors. Or it might allocate half the processors to
SPPARKS and half to the other code and run both codes simultaneously before syncing them up periodically. Or
it might instantiate multiple instances of SPPARKS to perform different calculations.

The spparks_close() function is used to shut down an instance of SPPARKS and free all its memory.

The spparks_file() and spparks_command() functions are used to pass a file or string to SPPARKS as if it were an
input script or single command in an input script. Thus the calling code can read or generate a series of SPPARKS
commands one line at a time and pass it thru the library interface to setup a problem and then run it, interleaving
the spparks_command() calls with other calls to extract information from SPPARKS, perform its own operations,
or call another code's library.

Other useful functions are also included in library.cpp. For example:

void *spparks_extract (void *, char *)
double *spparks_energy ()

These can extract various global or per-site quantities from SPPARKS so that a driver application can access the
values or even reset them. See the library.cpp file and its associated header file library.h for details.

The key idea of the library interface is that you can write any functions you wish to define how your code talks to
SPPARKS and add them to src/library.cpp and src/library.h, as well as to the Python interface. The routines you
add can access or change any SPPARKS data you wish. The examples/COUPLE and python directories have
example C++ and C and Python codes which show how a driver code can link to SPPARKS as a library, run
SPPARKS on a subset of processors, grab data from SPPARKS, change it, and put it back into SPPARKS.

67

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

1. Introduction

These sections provide an overview of what SPPARKS can do, describe what it means for SPPARKS to be an
open-source code, and acknowledge the funding and people who have contributed to SPPARKS.

1.1 What is SPPARKS

1.2 SPPARKS features

1.3 Open source distribution

1.4 Acknowledgments and citations

1.1 What is SPPARKS

SPPARKS is a Monte Carlo code that has algorithms for kinetic Monte Carlo (KMC), rejection KMC (rKMC),
and Metropolis Monte Carlo (MMC). On-lattice and off-lattice applications with spatial sites on which "events"
occur can be simulated in parallel.

KMC is also called true KMC or rejection-free KMC. rKMC is also called null-event MC. In a generic sense the
code's KMC and rKMC solvers catalog a list of events, each with an associated probability, choose a single event
to perform, and advance time by the correct amount. Events may be chosen individually at random, or a sweep of
enumarated sites can be performed to select possible events in a more ordered fashion.

Note that rKMC is different from Metropolis MC, which is sometimes called thermodynamic-equilibrium MC or
barrier-free MC, in that rKMC still uses rates to define events, often associated with the rate for the system to
cross some energy barrier. Thus both KMC and rKMC track the dynamic evolution of a system in a time-accurate
manner as events are performed. Metropolis MC is typically used to sample states from a system in equilibrium or
to drive a system to equilibrium (energy minimization). It does this be performing (possibly) non-physical events.
As such it has no requirement to sample events with the correct relative probabilities or to limit itself to physical
events (e.g. it can change an atom to a new species). Because of this it also does not evolve the system in a
time-accurate manner; in general there is no "time" associated with Metropolis MC events.

Applications are implemented in SPPARKS which define events and their probabilities and acceptance/rejection
criteria. They are coupled to solvers or sweepers to perform KMC or rKMC simulations. The KMC or rKMC
options for an application in SPPARKS can be written to define rates based on energy differences between the
initial and final state of an event and a Metropolis-style accept/reject criterion based on the Boltzmann factor
SPPARKS will then perform a Metropolis-style Monte Carlo simulation.

In parallel, a geometric partitioning of the simulation domain is performed. Sub-partitioning of processor domains
into colors or quadrants (2d) and octants (3d) is done to enable multiple events to be performed on multiple
processors simultaneously. Communication of boundary information is performed as needed.

Parallelism can also be invoked to perform multiple runs on a collection of processors, for statistical puposes.

SPPARKS is designed to be easy to modify and extend. For example, new solvers and sweeping rules can be
added, as can new applications. Applications can define new commands which are read from the input script.

SPPARKS is written in C++. It runs on single-processor desktop or laptop machines, but for some applications,

can also run on parallel computers. SPPARKS will run on any parallel machine that compiles C++ and supports
the MPI message-passing library. This includes distributed- or shared-memory machines.

68

https://spparks.github.io
http://www-unix.mcs.anl.gov/mpi

SPPARKS is a freely-available open-source code. See the SPPARKS WWW Site for download information. It is
distributed under the terms of the GNU Public License (GPL), or sometimes by request under the terms of the
GNU Lesser General Public License (LGPL), which means you can use or modify the code however you wish.
The only restrictions imposed by the GPL or LGPL are on how you distribute the code further. See this section for
a brief discussion of the open-source philosophy.

1.2 SPPARKS features
These are three kinds of applications in SPPARKS:
® on-lattice
e off-lattice
® general
On-lattice applications define static event sites with a fixed neighbor connectivity. Off-lattice applications define
mobile event sites such as particles. A particle's neighbors are typically specified by a cutoff distance. General
applications have no spatial component.
The set of on-lattice applications currently in SPPARKS are:
e diffusion model
¢ Ising model
¢ Potts model in many variants
* membrane model
e sintering model
The set of off-lattice applications currently in SPPARKS are:
¢ Metropolis atomic relaxation model

The set of general applications currently in SPPARKS are:

¢ biochemcial reaction network model
e test driver for solvers using a synthetic biochemical network

These are the KMC solvers currently available in SPPARKS and their scaling properties:
e linear search, O(N)
¢ tree search, O(logN)
e composition-rejection search, O(1)
Pre- and post-processing:
Our group has written and released a separate toolkit called Pizza.py which provides tools which can be used to

setup, analyze, plot, and visualize data for SPPARKS simulations. Pizza.py is written in Python and is available
for download from the Pizza.py WWW site.

69

https://spparks.github.io
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/licenses/lgpl-2.1.html
https://lammps.github.io/pizza
http://www.python.org
https://lammps.github.io/pizza

1.3 Open source distribution

SPPARKS comes with no warranty of any kind. As each source file states in its header, it is a copyrighted code
that is distributed free-of- charge, under the terms of the GNU Public License (GPL), or sometimes by request
under the terms of the GNU Lesser General Public License (LGPL). This is often referred to as open-source
distribution - see www.gnu.org or www.opensource.org for more details. The legal text of the GPL or LGPL is in
the LICENSE file that is included in the SPPARKS distribution.

Here is a summary of what the GPL means for SPPARKS users:

(1) Anyone is free to use, modify, or extend SPPARKS in any way they choose, including for commercial
purposes.

(2) If you distribute a modified version of SPPARKS, it must remain open-source, meaning you distribute source
code under the terms of the GPL. You should clearly annotate such a code as a derivative version of SPPARKS.

(3) If you distribute any code that used SPPARKS source code, including calling it as a library, then that must
also be open-source, meaning you distribute its source code under the terms of the GPL.

(4) If you give SPPARKS files to someone else, the GPL LICENSE file and source file headers (including the
copyright and GPL notices) should remain part of the code.

In the spirit of an open-source code, if you use SPPARKS for something useful or if you fix a bug or add a new
feature or applicaton to the code, let us know. We would like to include your contribution in the released version
of the code and/or advertise your success on our WWW page.

1.4 Acknowledgments and citations

SPPARKS is distributed by Sandia National Laboratories. SPPARKS development has been funded by the US
Department of Energy (DOE), through its LDRD and ASC programs.

The Authors page of the SPPARKS website lists the developers and their contact info, along with others who
have contributed code and expertise to the developement of SPPARKS.

70

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/licenses/lgpl-2.1.html
http://www.gnu.org
http://www.opensource.org
http://www.sandia.gov
http://www.doe.gov
http://www.doe.gov
https://spparks.github.io/authors.html

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

8. Modifying & extending SPPARKS

SPPARKS is designed in a modular fashion so as to be easy to modify and extend with new functionality.

In this section, changes and additions users can make are listed along with minimal instructions. If you add a new
feature to SPPARKS and think it will be of interest to general users, we encourage you to submit it to the
developers for inclusion in the released version of SPPARKS.

The best way to add a new feature is to find a similar feature in SPPARKS and look at the corresponding source
and header files to figure out what it does. You will need some knowledge of C++ to be able to understand the
hi-level structure of SPPARKS and its class organization, but functions (class methods) that do actual
computations are written in vanilla C-style code and operate on simple C-style data structures (vectors and
arrays).

Most of the new features described in this section require you to write a new C++ derived class. Creating a new
class requires 2 files, a source code file (*.cpp) and a header file (*.h). The derived class must provide certain
methods to work as a new option. Depending on how different your new feature is compared to existing features,
you can either derive from the base class itself, or from a derived class that already exists. Enabling SPPARKS to
invoke the new class is as simple as adding two lines to the style_user.h file, in the same syntax as other
SPPARKS classes are specified in the style.h file.

The advantage of C++ and its object-orientation is that all the code and variables needed to define the new feature
are in the 2 files you write, and thus shouldn't make the rest of SPPARKS more complex or cause side-effect
bugs.

Here is a concrete example. Suppose you write 2 files app_foo.cpp and app_foo.h that define a new class AppFoo
that implements a Monte Carlo model described in the classic 1997 paper by Foo, et al. If you wish to invoke that
application in a SPPARKS input script with a command like

app_style foo 0.1 3.5

you put your 2 files in the SPPARKS src directory and re-make the code. The app_foo.h file should have these
lines at the top

#ifdef APP_CLASS
AppStyle (foo, AppFoo)
#else

where "foo" is the style keyword to be used in the app_style command, and AppFoo is the class name in your
C++ files.

When you re-make SPPARKS, your new application becomes part of the executable and can be invoked with a
app_style command like the example above. Arguments like 0.1 and 3.5 can be defined and processed by your
new class.

Here is a list of the new features that can be added in this way.
¢ Application styles
¢ Diagnostic styles

¢ Input script commands
¢ Solve styles

71

https://spparks.github.io

As illustrated by the application example, these options are referred to in the SPPARKS documentation as the
"style" of a particular command.

The instructions below give the header file for the base class that these styles are derived from. Public variables in
that file are ones used and set by the derived classes which are also used by the base class. Sometimes they are
also used by the rest of SPPARKS. Virtual functions in the base class header file which are set = 0 are ones you
must define in your new derived class to give it the functionality SPPARKS expects. Virtual functions that are not
set to 0 are functions you can optionally define.

Application styles

In SPPARKS, applications are what define the simulation model that is evolved via Monte Carlo algorithms. A
new model typically requires adding a new application to the code. Read the doc page for the app_style command
to understand the distinction between on-lattice and off-lattice applications. A new off-lattice application can be
anything you wish. On-lattice applications are derive from the AppLattice class.

For on-lattice and off-lattice applications, here is a brief description of methods you define in your new derived
class. Some of them are required; some are optional. See app.h for details.

input_app additional commands the application defines
grow_app set pointers to per-site arrays used by the application
init_app initialize the application before a run

site_energy compute energy of a site

site_event_rejection |[peform an event with null-bin rejection (for rKMC)

site_propensity compute propensity of all events on a site (for KMC)

site_event perform an event (for KMC)

Note that two of the methods are required if you want your application to perform kinetic Monte Carlo (KMC)
with a solver. One of the methods is required if you want your application to perform rejection KMC (rKMC)
with a sweep method.

The constructor for your application class also needs to define, to insure proper operation with the "KMC
solvers'_solve.html and rejection KMC sweep methods. These are the flags, all of which have default values set in
app_lattice.cpp:

ninteger how many integer values are defined per site

ndouble how many floating point values are defined per site

delpropensity [how many neighbors away values are needed to compute propensity

delevent how many neighbors away may the value can be changed by an event
allow_kmc 1 if methods are provided for KMC

allow_rejection |1 if methods are provided for rejection KMC

allow_masking |1 if rKMC method supports masking

numrandom # of random numbers used by the site_event_rejection method

Diagnostic styles

Diagnostic classes compute some form of analysis periodically during a simulation. See the diag_style command
for details.

72

To add a new diagnostic, here is a brief description of methods you define in your new derived class. Some of
them are required; some are optional. See diag.h for details.

init setup the computation

compute perform the analysis computation

stats_header |what to add to statistics header for this diagnostic

stats fields added to statistics by this diagnostic

Input script commands

New commands can be added to SPPARKS input scripts by adding new classes that have a "command" method
and are listed in the Command sections of style_user.h (or style.h). For example, the shell commands (cd, mkdir,
rm, etc) are implemented in this fashion. When such a command is encountered in the SPPARKS input script,
SPPARKS simply creates a class with the corresponding name, invokes the "command" method of the class, and
passes it the arguments from the input script. The command method can perform whatever operations it wishes on
SPPARKS data structures.

The single method your new class must define is as follows:

command |operations performed by the new command

Of course, the new class can define other methods and variables as needed.

Solve styles

In SPPARKS, a solver performs the kinetic Monte Carlo (KMC) operation of selecting an event from a list of
events and associated probabilities. See the solve_style command for details.

To add a new KMC solver, here is a brief description of methods you define in your new derived class. Some of
them are required; some are optional. See diag.h for details.

Here is a brief description of methods you define in your new derived class. All of them are required. See solve.h
for details.

clone [make a copy of the solver for use within a sector of the domain

init initialize the solver

update [update one or more event probabilities

resize |change the number of events in the list

event |[select an event and associated timestep

(Foo) Foo, Morefoo, and Maxfoo, J of Classic Monte Carlo Applications, 75, 345 (1997).

73

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

6. Performance & scalability

Eventually this section will highlight SPPARKS performance in serial and parallel on interesting Monte Carlo
benchmarks.

74

https://spparks.github.io

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

9. Python interface to SPPARKS

This section describes how to build and use SPPARKS via a Python interface.

¢ 9.1 Building SPPARKS as a shared library

¢ 9.2 Installing the Python wrapper into Python

¢ 0.3 Extending Python with MPI to run in parallel
® 0.4 Testing the Python-SPPARKS interface

¢ 9.5 Using SPPARKS from Python

¢ 9.6 Example Python scripts that use SPPARKS

The SPPARKS distribution includes the file python/spparks.py which wraps the library interface to SPPARKS.
This file makes it is possible to run SPPARKS, invoke SPPARKS commands or give it an input script, extract
SPPARKS results, an modify internal SPPARKS variables, either from a Python script or interactively from a
Python prompt. You can do the former in serial or parallel. Running Python interactively in parallel does not
generally work, unless you have a package installed that extends your Python to enable multiple instances of
Python to read what you type.

Python is a powerful scripting and programming language which can be used to wrap software like SPPARKS
and other packages. It can be used to glue multiple pieces of software together, e.g. to run a coupled or multiscale
model. See Section section of the manual for more ideas about coupling SPPARKS to other codes. See
Section_start 4 about how to build SPPARKS as a library, and Section_howto 3 for a description of the library
interface provided in src/library.cpp and src/library.h and how to extend it for your needs. As described below,
that interface is what is exposed to Python. It is designed to be easy to add functions to. This can easily extend the
Python inteface as well. See details below.

By using the Python interface, SPPARKS can also be coupled with a GUI or other visualization tools that display
graphs or animations in real time as SPPARKS runs. Examples of such scripts may eventually be included in the
python directory.

Two advantages of using Python are how concise the language is, and that it can be run interactively, enabling
rapid development and debugging of programs. If you use it to mostly invoke costly operations within SPPARKS,
such as running a simulation for a reasonable number of timesteps, then the overhead cost of invoking SPPARKS
thru Python will be negligible.

Before using SPPARKS from a Python script, you need to do two things. You need to build SPPARKS as a
dynamic shared library, so it can be loaded by Python. And you need to tell Python how to find the library and the
Python wrapper file python/spparks.py. Both these steps are discussed below. If you wish to run SPPARKS in
parallel from Python, you also need to extend your Python with MPI. This is also discussed below.

The Python wrapper for SPPARKS uses the amazing and magical (to me) "ctypes" package in Python, which
auto-generates the interface code needed between Python and a set of C interface routines for a library. Ctypes is
part of standard Python for versions 2.5 and later. You can check which version of Python you have installed, by
simply typing "python" at a shell prompt.

75

https://spparks.github.io
http://www.python.org

9.1 Building SPPARKS as a shared library

Instructions on how to build SPPARKS as a shared library are given in Section_start 5. A shared library is one
that is dynamically loadable, which is what Python requires. On Linux this is a library file that ends in ".so", not

a.

From the src directory, type

make makeshlib
make —-f Makefile.shlib foo

where foo is the machine target name, such as linux or g++ or serial. This should create the file libspparks_foo.so
in the src directory, as well as a soft link libspparks.so, which is what the Python wrapper will load by default.
Note that if you are building multiple machine versions of the shared library, the soft link is always set to the most
recently built version.

If this fails, see Section_start 5 for more details, especially if your SPPARKS build uses auxiliary libraries like
MPI which may not be built as shared libraries on your system.

9.2 Installing the Python wrapper into Python
For Python to invoke SPPARKS, there are 2 files it needs to know about:

¢ python/spparks.py
e src/libspparks.so

Spparks.py is the Python wrapper on the SPPARKS library interface. Libspparks.so is the shared SPPARKS
library that Python loads, as described above.

You can insure Python can find these files in one of two ways:

® set two environment variables
¢ run the python/install.py script

If you set the paths to these files as environment variables, you only have to do it once. For the csh or tcsh shells,
add something like this to your ~/.cshrc file, one line for each of the two files:

setenv PYTHONPATH $PYTHONPATH:/home/sjplimp/spparks/python
setenv LD_LIBRARY_PATH $LD_LIBRARY PATH:/home/sjplimp/spparks/src

If you use the python/install.py script, you need to invoke it every time you rebuild SPPARKS (as a shared
library) or make changes to the python/spparks.py file.

You can invoke install.py from the python directory as
% python install.py [libdir] [pydir]
The optional libdir is where to copy the SPPARKS shared library to; the default is /usr/local/lib. The optional

pydir is where to copy the spparks.py file to; the default is the site-packages directory of the version of Python
that is running the install script.

76

Note that libdir must be a location that is in your default LD_ILIBRARY_PATH, like /usr/local/lib or /usr/lib. And
pydir must be a location that Python looks in by default for imported modules, like its site-packages dir. If you
want to copy these files to non-standard locations, such as within your own user space, you will need to set your
PYTHONPATH and LD_LIBRARY_PATH environment variables accordingly, as above.

If the install.py script does not allow you to copy files into system directories, prefix the python command with
"sudo". If you do this, make sure that the Python that root runs is the same as the Python you run. E.g. you may
need to do something like

% sudo /usr/local/bin/python install.py [libdir] [pydir]
You can also invoke install.py from the make command in the src directory as
% make install-python

In this mode you cannot append optional arguments. Again, you may need to prefix this with "sudo". In this mode
you cannot control which Python is invoked by root.

Note that if you want Python to be able to load different versions of the SPPARKS shared library (see this section
below), you will need to manually copy files like libspparks_g++.so into the appropriate system directory. This is
not needed if you set the LD_LIBRARY_PATH environment variable as described above.

9.3 Extending Python with MPI to run in parallel

If you wish to run SPPARKS in parallel from Python, you need to extend your Python with an interface to MPI.
This also allows you to make MPI calls directly from Python in your script, if you desire.

There are several Python packages available that purport to wrap MPI as a library and allow MPI functions to be
called from Python.

These include

* pyMPI

® maroonmpi
* mpidpy

e myMPI

® Pypar

All of these except pyMPI work by wrapping the MPI library and exposing (some portion of) its interface to your
Python script. This means Python cannot be used interactively in parallel, since they do not address the issue of
interactive input to multiple instances of Python running on different processors. The one exception is pyMPI,
which alters the Python interpreter to address this issue, and (I believe) creates a new alternate executable (in
place of "python" itself) as a result.

In principle any of these Python/MPI packages should work to invoke SPPARKS in parallel and MPI calls
themselves from a Python script which is itself running in parallel. However, when I downloaded and looked at a
few of them, their documentation was incomplete and I had trouble with their installation. It's not clear if some of
the packages are still being actively developed and supported.

The one I recommend, since I have successfully used it with SPPARKS, is Pypar. Pypar requires the ubiquitous
Numpy package be installed in your Python. After launching python, type

77

http://pympi.sourceforge.net/
http://code.google.com/p/maroonmpi/
http://code.google.com/p/mpi4py/
http://nbcr.sdsc.edu/forum/viewtopic.php?t=89&sid=c997fefc3933bd66204875b436940f16
http://code.google.com/p/pypar
http://numpy.scipy.org

import numpy

to see if it is installed. If not, here is how to install it (version 1.3.0b1 as of April 2009). Unpack the numpy tarball
and from its top-level directory, type

python setup.py build
sudo python setup.py install

The "sudo" is only needed if required to copy Numpy files into your Python distribution's site-packages directory.

To install Pypar (version pypar-2.1.4_94 as of Aug 2012), unpack it and from its "source" directory, type

python setup.py build
sudo python setup.py install

Again, the "sudo" is only needed if required to copy Pypar files into your Python distribution's site-packages
directory.

If you have successully installed Pypar, you should be able to run Python and type
import pypar

without error. You should also be able to run python in parallel on a simple test script
% mpirun -np 4 python test.py

where test.py contains the lines

import pypar
print "Proc %d out of %d procs" % (pypar.rank(),pypar.size())

and see one line of output for each processor you run on.

IMPORTANT NOTE: To use Pypar and SPPARKS in parallel from Python, you must insure both are using the
same version of MPL. If you only have one MPI installed on your system, this is not an issue, but it can be if you
have multiple MPIs. Your SPPARKS build is explicit about which MPI it is using, since you specify the details in
your lo-level scc/MAKE/Makefile.foo file. Pypar uses the "mpicc” command to find information about the MPI it
uses to build against. And it tries to load "libmpi.so" from the LD_LIBRARY_PATH. This may or may not find
the MPI library that SPPARKS is using. If you have problems running both Pypar and SPPARKS together, this is
an issue you may need to address, e.g. by moving other MPI installations so that Pypar finds the right one.

9.4 Testing the Python-SPPARKS interface

To test if SPPARKS is callable from Python, launch Python interactively and type:

>>> from spparks import spparks
>>> spk = spparks()

If you get no errors, you're ready to use SPPARKS from Python. If the 2nd command fails, the most common
error to see is

OSError: Could not load SPPARKS dynamic library

78

which means Python was unable to load the SPPARKS shared library. This typically occurs if the system can't
find the SPPARKS shared library or one of the auxiliary shared libraries it depends on, or if something about the
library is incompatible with your Python. The error message should give you an indication of what went wrong.

You can also test the load directly in Python as follows, without first importing from the spparks.py file:

>>> from ctypes import CDLL
>>> CDLL("libspparks.so")

If an error occurs, carefully go thru the steps in Section_start 5 and above about building a shared library and
about insuring Python can find the necessary two files it needs.

Test SPPARKS and Python in serial:
To run a SPPARKS test in serial, type these lines into Python interactively from the examples/ising directory:

>>> from spparks import spparks
>>> spk = spparks ()
>>> spk.file("in.ising")

Or put the same lines in the file test.py and run it as

)

% python test.py

Either way, you should see the results of running the in.ising example on a single processor appear on the screen,
the same as if you had typed something like:

spk_g++ <in.ising
Test SPPARKS and Python in parallel:

To run SPPARKS in parallel, assuming you have installed the Pypar package as discussed above, create a test.py
file containing these lines:

import pypar

from spparks import spparks

spk = spparks ()

spk.file("in.ising")

print "Proc %d out of %d procs has" % (pypar.rank(),pypar.size()),spk
pypar.finalize ()

You can then run it in parallel as:

)

% mpirun -np 4 python test.py

and you should see the same output as if you had typed

% mpirun -np 4 spk_g++ <in.ising

Note that if you leave out the 3 lines from test.py that specify Pypar commands you will instantiate and run
SPPARKS independently on each of the P processors specified in the mpirun command. In this case you should
get 4 sets of output, each showing that a SPPARKS run was made on a single processor, instead of one set of
output showing that SPPARKS ran on 4 processors. If the 1-processor outputs occur, it means that Pypar is not
working correctly.

79

http://datamining.anu.edu.au/~ole/pypar

Also note that once you import the PyPar module, Pypar initializes MPI for you, and you can use MPI calls
directly in your Python script, as described in the Pypar documentation. The last line of your Python script should
be pypar.finalize(), to insure MPI is shut down correctly.

Running Python scripts:

Note that any Python script (not just for SPPARKS) can be invoked in one of several ways:

o°

python foo.script
python -i foo.script
foo.script

o°

o°

The last command requires that the first line of the script be something like this:

#!/usr/local/bin/python
#!/usr/local/bin/python -i

where the path points to where you have Python installed, and that you have made the script file executable:
% chmod +x foo.script

Without the "-i" flag, Python will exit when the script finishes. With the "-i" flag, you will be left in the Python
interpreter when the script finishes, so you can type subsequent commands. As mentioned above, you can only
run Python interactively when running Python on a single processor, not in parallel.

9.5 Using SPPARKS from Python

The Python interface to SPPARKS consists of a Python "spparks" module, the source code for which is in
python/spparks.py, which creates a "spparks" object, with a set of methods that can be invoked on that object. The
sample Python code below assumes you have first imported the "spparks" module in your Python script, as
follows:

from spparks import spparks

These are the methods defined by the spparks module. If you look at the file src/library.cpp you will see that they
correspond one-to-one with calls you can make to the SPPARKS library from a C++ or C or Fortran program.

spk = spparks

(
spk = spparks ("g++") # create a SPPARKS object using the libspparks_g++.so library
spk = spparks("",list) # ditto, with command-line args, e.g. list = ["-echo","screen"]
spk = spparks ("g++",1list)
spk.close () # destroy a SPPARKS object
spk.file(file) # run an entire input script, file = "in.13"
spk.command (cmd) # invoke a single SPPARKS command, cmd = "run 100.0"

xlo = spk.extract (name,type) # extract a global gquantity

name = "boxxlo", "nlocal", "id", "xyz", "site", iarray2",

= int

= int vector

= int array

= double

= double vector

4=

t
<
o]
(0]
Il

B W N e o
|

80

create a SPPARKS object using the default libspparks.so library

"da:

5 = double array

eng = spk.energy () # query current energy of system

IMPORTANT NOTE: Currently, the creation of a SPPARKS object from within spparks.py does not take an MPI
communicator as an argument. There should be a way to do this, so that the SPPARKS instance runs on a subset
of processors if desired, but I don't know how to do it from Pypar. So for now, it runs with
MPI_COMM_WORLD, which is all the processors. If someone figures out how to do this with one or more of the
Python wrappers for MPI, like Pypar, please let us know and we will amend these doc pages.

Note that you can create multiple SPPARKS objects in your Python script, and coordinate and run multiple
simulations, e.g.

from spparks import spparks
spkl = spparks/()

spk2 = spparks()
spkl.file("in.filel")
spk2.file("in.file2")

The file() and command() methods allow an input script or single commands to be invoked.

The extract() method returns values or pointers to data structures internal to SPPARKS. See the src/app.cpp file
and its extract() method for a list of what is recognized as "name" arguments. Other values could easily be added.

For example, "boxxlo" returns the lower x-bound of the simulation box. "Nlocal" and "nglobal" return the number
of lattice sites owned by a proc or the total # of lattice sites in the simulation. "Xyz" returns the Nx3 array of
lattice site coordinates. "Site" and "iarrayN" and "darrayN" return a vector of integer or floating-point per-site
values.

As noted above, these Python class methods correspond one-to-one with the functions in the SPPARKS library
interface in src/library.cpp and library.h. This means you can extend the Python wrapper via the following steps:

¢ Add a new interface function to src/library.cpp and src/library.h.

® Rebuild SPPARKS as a shared library.

e Add a wrapper method to python/spparks.py for this interface function.

® You should now be able to invoke the new interface function from a Python script. Isn't ctypes amazing?

9.6 Example Python scripts that use SPPARKS

These are the Python scripts included as demos in the python/examples directory of the SPPARKS distribution, to
illustrate the kinds of things that are possible when Python wraps SPPARKS. If you create your own scripts, send
them to us and we can include them in the SPPARKS distribution.

trivial.py |read/run a SPPARKS input script thru Python

demo.py |invoke various SPPARKS library interface routines

See the python/README file for instructions on how to run them and the source code for individual scripts for
comments about what they do.

81

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

2. Getting Started

This section describes how to unpack, make, and run SPPARKS.

2.1 What's in the SPPARKS distribution
2.2 Making SPPARKS

2.3 Making SPPARKS with optional packages

2.4 Building SPPARKS as a library
2.5 Running SPPARKS

2.6 Command-line options

2.7 SPPARKS screen output

2.1 What's in the SPPARKS distribution

When you download SPPARKS you will need to unzip and untar the downloaded file with the following

commands, after placing the tarball in an appropriate directory.

gunzip spparks*.tar.gz
tar xvf spparks*.tar

This will create a spparks directory containing two files and several sub-directories:

README |text file

LICENSE [the GNU General Public License (GPL)
doc documentation

examples |test problems

python |Python wrapper

SIC source files

tools auxiliary tools

2.2 Making SPPARKS

This section has the following sub-sections:

® Read this first
¢ Building a SPPARKS executable

e Common errors that can occur when making SPPARKS

¢ Editing a new low-level Makefile
¢ Additional build tips

¢ Building for a Mac

¢ Building for Windows

Read this first:

Building SPPARKS can be non-trivial. You will likely need to edit a makefile, there are compiler options,
additional libraries can be used (MPI, JPEG), etc. Please read this section carefully. If you are not comfortable

with makefiles, or building codes on a Unix platform, or running an MPI job on your machine, please find a local

expert to help you.

82

https://spparks.github.io

Building a SPPARKS executable:

The src directory contains the C++ source and header files for SPPARKS. It also contains a top-level Makefile
and a MAKE sub-directory with low-level Makefile.* files for several machines. From within the src directory,
type "make" or "gmake". You should see a list of available choices. If one of those is the machine and options you
want, say serial or mpi or linux, then type one of the commands:

make serial
make mpi
gmake linux

Try the "serial" and "mpi" targets first, since they are generic and should typically work on any machine,
assuming you have the GNU g++ compiler (for the serial version) and MPI installed (for the mpi version).
Note that on a multi-processor or multi-core platform you can launch a parallel make, by using the "-j" switch
with the make command, which will typically build SPPARKS more quickly.

If you get no errors and an executable like spk_serial or spk_mpi is produced, you're done; it's your lucky day.
IMPORTANT NOTE: You need a C++ compiler that is C++11 compliant to build SPPARKS. Almost all current

C++ compilers are; you just need to use a -std=c++11 flag when compiling, as in the
src/MAKE/Makefile.machine files provided with SPPARKS.

Common errors that can occur when making SPPARKS:

(1) If the make command breaks immediately with errors that indicate it can't find files with a "*" in their names,
this can be because your machine's make doesn't support wildcard expansion in a makefile. Try gmake instead of
make.

(2) Other errors typically occur because the low-level Makefile isn't setup correctly for your machine. If your
platform is named "foo", you need to create a Makefile.foo in the MAKE sub-directory. Use whatever existing
file is closest to your platform as a starting point. See the next section for more instructions.

Editing a new low-level Makefile.foo:

These are the issues you need to address when editing a low-level Makefile for your machine. With a couple
exceptions, the only portion of the file you should need to edit is the "System-specific Settings" section.

(1) Change the first line of Makefile.foo to include the word "foo" and whatever other options you set. This is the
line you will see if you just type "make".

(2) The "compiler/linker settings" section lists compiler and linker settings for your C++ compiler, including path
and optimization flags. You can use g++, the open-source GNU compiler, which is available on all Unix systems.
You can also use mpicc which will typically be available if MPI is installed on your system, though you should
check which actual compiler it wraps. You can also point to a specific compiler; for example see
MAKE/Makefile.spencer.gnu where an environment variable MPI_HOME is used to specify path to mpicxx and
mpicc compilers.

Vendor compilers often produce faster code. On boxes with Intel CPUs, we suggest using the commercial Intel
icc compiler, which can be downloaded from Intel's compiler site.

83

http://www.intel.com/software/products/noncom

If building a C++ code on your machine requires additional libraries, then you should list them as part of the LIB
variable.

The DEPFLAGS setting is what triggers the C++ compiler to create a dependency list for a source file. This
speeds re-compilation when source (*.cpp) or header (*.h) files are edited. Some compilers do not support
dependency file creation, or may use a different switch than -D. GNU g++ works with -D. If your compiler can't
create dependency files (a long list of errors involving *.d files), then you'll need to create a Makefile.foo
patterned after Makefile.storm, which uses different rules that do not involve dependency files.

(3) The "system-specific settings" section has 3 parts.

(3.a2) The SPK_INC variable is used to include options that turn on system-dependent ifdefs within the SPPARKS
code. The settings that are currently recogized are:

¢ -DSPPARKS_GZIP

¢ -DSPPARKS_JPEG

¢ -DSPPARKS_SMALLBIG

¢ -DSPPARKS_BIGBIG

¢ -DSPPARKS_SMALLSMALL

The read_sites and dump commands will read/write gzipped files if you compile with -DSPPARKS_GZIP. It
requires that your Unix support the "popen" command.

If you use -DSPPARKS_JPEG, the dump image command will be able to write out JPEG image files. If not, it
will only be able to write out text-based PPM image files. For JPEG files, you must also link SPPARKS with a
JPEQG library. See section (3.c) below for more details on this.

Use at most one of the -DSPPARKS_SMALLBIG, -DSPPARKS_BIGBIG, -DSPPARKS_SMALLSMALL
settings. The default is -DSPPARKS_SMALLBIG. These settings refer to use of 4-byte (small) vs 8-byte (big)
integers within SPPARKS, as specified in src/spktype.h. The only reason to use the BIGBIG setting is to enable
simulation of systems with more than 2 billion sites. Normally, the only reason to use SMALLSMALL is if your
machine does not support 64-bit integers. See the Additional build tips section below for more details on these
settings.

(3.b) The 3 MPI variables are used to specify an MPI library to build SPPARKS with.

If you want SPPARKS to run in parallel, you must have an MPI library installed on your platform. If you use an
MPI-wrapped compiler, such as "mpicc" to build SPPARKS, you can probably leave these 3 variables blank. If
you do not use "mpicc" as your compiler/linker, then you need to specify where the mpi.h file (MPI_INC) and the
MPI library (MPI_PATH) is found and its name (MPI_LIB).

If you are installing MPI yourself, we recommend Argonne's MPICH 1.2 or 2.0 or OpenMPI. MPICH can be
downloaded from the Argonne MPI site. OpenMPI can be downloaded the OpenMPI site. LAM MPI should also
work. If you are running on a big parallel platform, your system people or the vendor should have already
installed a version of MPI, which will be faster than MPICH or OpenMPI or LAM, so find out how to build and
link with it. If you use MPICH or OpenMPI or LAM, you will have to configure and build it for your platform.
The MPI configure script should have compiler options to enable you to use the same compiler you are using for
the SPPARKS build, which can avoid problems that can arise when linking SPPARKS to the MPI library.

If you just want SPPARKS to run on a single processor, you can use the STUBS library in place of MPI, since
you don't need a true MPI library installed on your system. See the Makefile.serial file for how to specify the 3
MPI variables. You will also need to build the STUBS library for your platform before making SPPARKS itself.

84

http://www-unix.mcs.anl.gov/mpi
http://www.open-mpi.org

From the STUBS dir, type "make" and it will hopefully create a libmpi.a suitable for linking to SPPARKS. If this
build fails, you will need to edit the STUBS/Makefile for your platform.

The file STUBS/mpi.cpp has a CPU timer function MPI_Wtime() that calls gettimeofday() . If your system
doesn't support gettimeofday() , you'll need to insert code to call another timer. Note that the ANSI-standard
function clock() rolls over after an hour or so, and is therefore insufficient for timing long SPPARKS simulations.

(3.c) The 3 JPG variables are used to specify a JPEG library which SPPARKS uses when writing a JPEG file via
the dump image command. These can be left blank if you are not using the -DSPPARKS_JPEG switch discussed
above in section (3.a).

A standard JPEG library usually goes by the name libjpeg.a and has an associated header file jpeglib.h.
Whichever JPEG library you have on your platform, you'll need to set the appropriate JPG_INC, JPG_PATH, and
JPG_LIB variables in Makefile.foo so that the compiler and linker can find it.

That's it. Once you have a correct Makefile.foo and you have pre-built any other libraries it will use (e.g. MPI,
JPEQG), all you need to do from the src directory is type one of these 2 commands:

That's it. Once you have a correct Makefile.foo and you have pre-built the MPI library it uses, all you need to do
from the src directory is type one of these 2 commands:

make foo
gmake foo

You should get the executable spk_foo when the build is complete.

Additional build tips:
(1) Building SPPARKS for multiple platforms.

You can make SPPARKS for multiple platforms from the same src directory. Each target creates its own object
sub-directory called Obj_name where it stores the system-specific *.o files.

(2) Cleaning up.
Typing "make clean" will delete all *.0 object files created when SPPARKS is built.

(3) Changing the SPPARKS size limits via -DSPPARKS_SMALLBIG or -DSPPARKS_BIGBIG or
-DSPPARKS_SMALLSMALL

As explained above, any of these 3 settings can be specified on the SPK_INC line in your low-level
src/MAKE/Makefile.foo.

The default is -DSPPARKS_SMALLBIG which allows for systems with up to 2”31 sites (about 2 billion). This is
because the site IDs are stored in 32-bit integers.

To allow for larger systems, compile with -DSPPARKS_BIGBIG. This stores site IDs in 64-bit integers. This
enables systems with up to 2763 sites (about 9e18).

If your system does not support 8-byte integers, you will need to compile with the -DSPPARKS_SMALLSMALL

setting. This will restrict the total number of sites to 2731 (about 2 billion), as well as store some simulation
statistics in 4-byte integers.

85

Note that in src/lmptype.h there are definitions of all these data types as well as the MPI data types associated
with them. The MPI types need to be consistent with the associated C data types, or else SPPARKS will generate
a run-time error. As far as we know, the settings defined in src/spktype.h are portable and work on every current
system.

In all cases, the size of problem that can be run on a per-processor basis is limited by 4-byte integer storage to
2731 sites per processor (about 2 billion). This should not normally be a limitation since such a problem would
have a huge per-processor memory and would run very slowly in terms of CPU secs per Monte Carlo interation.

Building for a Mac:

OS Xis BSD Unix, so it already works. See the Makefile.mac file.

Building for Windows:

SPPARKS is just C++ with MPI calls, so it should be possible to build it for a Windows box, either using a Linux
installation such as cygwin (see src/MAKE/Makefile.cygwin), or importing the source files into Visual Studio
C++ and building it there. For the latter you are on your own. The SPPARKS developers do not use Windows.
But if you figure out how to do it, or create a Visual Studio project that works, please let us know, and we can
release the instructions/files for how to do this as part of SPPARKS.

2.3 Making SPPARKS with optional packages

The source code for SPPARKS is structured as a large set of core files which are always used, plus optional
packages, which are groups of files that enable a specific set of features. You can see the list of both standard and
user-contributed packages by typing "make package".

Currently there is only one optional package: STITCH. It is dicussed more below.

Any or all packages can be included or excluded when SPPARKS is built. You may wish to exclude certain
packages if you will never run certain kinds of simulations.

By default, SPPARKS includes no packages.

Packages are included or excluded by typing "make yes-name" or "make no-name", where "name" is the name of
the package. You can also type "make yes-all" or "make no-all" to include/exclude all packages. These commands
work by simply moving files back and forth between the main src directory and sub-directories with the package
name, so that the files are seen or not seen when SPPARKS is built. After you have included or excluded a
package, you must re-build SPPARKS.

Additional make options exist to help manage SPPARKS files that exist in both the src directory and in package
sub-directories. You do not normally need to use these commands unless you are editing SPPARKS files or have
downloaded a patch from the SPPARKS WWW site. Typing "make package-update" will overwrite src files with
files from the package directories if the package has been included. It should be used after a patch is installed,
since patches only update the master package version of a file. Typing "make package-overwrite" will overwrite
files in the package directories with src files. Typing "make package-check" will list differences between src and
package versions of the same files.

2.3.1 STITCH package

The STITCH package allows SPPARKS to use the Stitch library for I/O, which is included in the SPPARKS
distribution in lib/stitch. At some point the Stitch library will have its own website and will also be downloadable

86

there.

Stitch is an efficient I/O API and database format with a native python interface. Stitch files can read in to start a
simulation and/or output during a simulation. A novel aspect of stitch is that it enables out-of-core computations
by building a simulation domain analogously to the way an additive manufactured (AM) part is built. It merges
outputs written over time to efficiently construct a much larger simulation domain that would otherwise be
impossible to model in one simulation. Stitzching workflows can be created to perform multiple SPPARKS
simulations representing an additive manufacturing process; such simulations can produce huge numbers of lattice
sites representing an entire AM build that would otherwise be impossible to simulate due to length scale and
computational resource limitations. Stitch is intended and primarily focused on microstructural evolution
simulations such as welding and additive manufacturing but other applications may be possible.

Building SPPARKS with the STITCH package enables these commands to use stitch-related options:
¢ dump stitch
® set stitch

® reset_time

See the am_path and stitch sub-directories in the examples directory for models and scripts which use the Stitch
library.

You can build SPPARKS with stitch support in one of 3 ways.

(1) From the src directory using make

o°

cd spparks/src

% make lib-stitch args="-b" # build the Stitch library and set links to it
% make yes-stitch # install the STITCH package
% make mpi # or whichever machine target you wish
(2) From the lib directory using Install.py
% cd spparks/lib
% python Install.py -b # build the Stitch library and set links to it
% cd spparks/src
% make yes-stitch # install the STITCH package
% make mpi # or whichever machine target you wish

(3) Manual build of the Stitch library you have downloaded to your system

% cd S$STITCHDIR # STITCHDIR = the Stitch library directory
% make # build Stitch with default Makefile

% make —-f Makefile.custom # build Stitch with custom Makefile

% cd spparks/lib/stitch

% 1In -s S$STITCHDIR liblink # set two links in SPPARKS lib/stitch

o°

In —-s $STITCHDIR includelink

cd spparks/src

make yes-stitch # install the STITCH package

make mpi # or whichever machine target you wish

o° oo

o°

To un-install the STITCH package from SPPARKS, do the following:

% cd spparks/src
make no-stitch # un-install the STITCH package files
make mpi # re-build SPPARKS w/out the STITCH package

o°

o°

87

2.4 Building SPPARKS as a library

SPPARKS can be built as either a static or shared library, which can then be called from another application or a
scripting language. See this section for more info on coupling SPPARKS to other codes. See this section for more
info on wrapping and running SPPARKS from Python.

Static library:

To build SPPARKS as a static library (*.a file on Linux), type

make makelib
make —-f Makefile.lib foo

where foo is the machine name. This kind of library is typically used to statically link a driver application to
SPPARKS, so that you can insure all dependencies are satisfied at compile time. Note that inclusion or exclusion
of any desired optional packages should be done before typing "make makelib". The first "make" command will
create a current Makefile.lib with all the file names in your src dir. The second "make" command will use it to
build SPPARKS as a static library, using the ARCHIVE and ARFLAGS settings in src/MAKE/Makefile.foo. The
build will create the file libspparks_foo.a which another application can link to.

Shared library:

To build SPPARKS as a shared library (*.so file on Linux), which can be dynamically loaded, e.g. from Python,
type

make makeshlib
make —-f Makefile.shlib foo

where foo is the machine name. This kind of library is required when wrapping SPPARKS with Python; see
Section_python for details. Again, note that inclusion or exclusion of any desired optional packages should be
done before typing "make makelib". The first "make" command will create a current Makefile.shlib with all the
file names in your src dir. The second "make" command will use it to build SPPARKS as a shared library, using
the SHFLAGS and SHLIBFLAGS settings in src/MAKE/Makefile.foo. The build will create the file
libspparks_foo.so which another application can link to dyamically. It will also create a soft link libspparks.so,
which the Python wrapper uses by default.

Note that for a shared library to be usable by a calling program, all the auxiliary libraries it depends on must also
exist as shared libraries. This will be the case for libraries included with SPPARKS, such as the dummy MPI
library in src/STUBS since they are always built as shared libraries with the -fPIC switch. However, if a library
like MPI does not exist as a shared library, the second make command will generate an error. This means you will
need to install a shared library version of the package. The build instructions for the library should tell you how to
do this.

As an example, here is how to build and install the MPICH library, a popular open-source version of MPI,
distributed by Argonne National Labs, as a shared library in the default /usr/local/lib location:

./configure --enable-shared
make
make install

You may need to use "sudo make install" in place of the last line if you do not have write privileges for
/usr/local/lib. The end result should be the file /ust/local/lib/libmpich.so.

88

http://www-unix.mcs.anl.gov/mpi

Additional requirement for using a shared library:

The operating system finds shared libraries to load at run-time using the environment variable
LD_LIBRARY_PATH. So you may wish to copy the file src/libspparks.so or src/libspparks_g++.so (for
example) to a place the system can find it by default, such as /ust/local/lib, or you may wish to add the SPPARKS
src directory to LD_LIBRARY_PATH, so that the current version of the shared library is always available to
programs that use it.

For the csh or tcsh shells, you would add something like this to your ~/.cshrc file:
setenv LD_LIBRARY_PATH S$LD_LIBRARY_PATH:/home/sjplimp/spparks/src

Calling the SPPARKS library:

Either flavor of library (static or shared0 allows one or more SPPARKS objects to be instantiated from the calling
program.

When used from a C++ program, all of SPPARKS is wrapped in a SPPARKS_NS namespace; you can safely use
any of its classes and methods from within the calling code, as needed.

When used from a C or Fortran program or a scripting language like Python, the library has a simple
function-style interface, provided in src/library.cpp and src/library.h.

See the sample codes in examples/COUPLE/simple for examples of C++ and C and Fortran codes that invoke
SPPARKS thru its library interface. There are other examples as well in the COUPLE directory which are
discussed in Section_howto 2 of the manual. See Section_python of the manual for a description of the Python
wrapper provided with SPPARKS that operates through the SPPARKS library interface.

The files src/library.cpp and library.h define the C-style API for using SPPARKS as a library. See Section_howto
3 of the manual for a description of the interface and how to extend it for your needs.

2.5 Running SPPARKS

By default, SPPARKS runs by reading commands from stdin; e.g. spk_linux < in.file. This means you first create
an input script (e.g. in.file) containing the desired commands. This section describes how input scripts are
structured and what commands they contain.

You can test SPPARKS on any of the sample inputs provided in the examples directory. Input scripts are named
in.* and sample outputs are named log.*.name.P where name is a machine and P is the number of processors it
was run on.

Here is how you might run the Potts model tests on a Linux box, using mpirun to launch a parallel job:

cd src

make linux

cp spk_linux ../examples/1l]

cd ../examples/potts

mpirun -np 4 spk_linux <in.potts

The screen output from SPPARKS is described in a section below. As it runs, SPPARKS also writes a log.spparks
file with the same information.

Note that this sequence of commands copies the SPPARKS executable (spk_linux) to the directory with the input
files. This may not be necessary, but some versions of MPI reset the working directory to where the executable is,

89

rather than leave it as the directory where you launch mpirun from (if you launch spk_linux on its own and not
under mpirun). If that happens, SPPARKS will look for additional input files and write its output files to the
executable directory, rather than your working directory, which is probably not what you want.

If SPPARKS encounters errors in the input script or while running a simulation it will print an ERROR message
and stop or a WARNING message and continue. See this section for a discussion of the various kinds of errors
SPPARKS can or can't detect, a list of all ERROR and WARNING messages, and what to do about them.

SPPARKS can run a problem on any number of processors, including a single processor. SPPARKS can run as
large a problem as will fit in the physical memory of one or more processors. If you run out of memory, you must
run on more processors or setup a smaller problem.

2.6 Command-line options

At run time, SPPARKS recognizes several optional command-line switches which may be used in any order. For
example, spk_ibm might be launched as follows:

mpirun -np 16 spk_ibm -var f tmp.out -log my.log —-screen none <in.alloy
These are the command-line options:

—echo style

Set the style of command echoing. The style can be none or screen or log or both. Depending on the style, each
command read from the input script will be echoed to the screen and/or logfile. This can be useful to figure out
which line of your script is causing an input error. The default value is log. The echo style can also be set by using
the echo command in the input script itself.

-partition 8x2 4 5 ...

Invoke SPPARKS in multi-partition mode. When SPPARKS is run on P processors and this switch is not used,
SPPARKS runs in one partition, i.e. all P processors run a single simulation. If this switch is used, the P
processors are split into separate partitions and each partition runs its own simulation. The arguments to the
switch specify the number of processors in each partition. Arguments of the form MxN mean M partitions, each
with N processors. Arguments of the form N mean a single partition with N processors. The sum of processors in
all partitions must equal P. Thus the command "-partition 8x2 4 5" has 10 partitions and runs on a total of 25
processors.

The input script specifies what simulation is run on which partition; see the variable and next commands. This
howto section gives examples of how to use these commands in this way. Simulations running on different
partitions can also communicate with each other; see the temper command.

-in file
Specify a file to use as an input script. This is an optional switch when running SPPARKS in one-partition mode.
If it is not specified, SPPARKS reads its input script from stdin - e.g. spk_linux < in.run. This is a required switch
when running SPPARKS in multi-partition mode, since multiple processors cannot all read from stdin.

-log file

Specify a log file for SPPARKS to write status information to. In one-partition mode, if the switch is not used,
SPPARKS writes to the file log.spparks. If this switch is used, SPPARKS writes to the specified file. In
multi-partition mode, if the switch is not used, a log.SPPARKS file is created with hi-level status information.

90

Each partition also writes to a log. SPPARKS.N file where N is the partition ID. If the switch is specified in
multi-partition mode, the hi-level logfile is named "file" and each partition also logs information to a file.N. For
both one-partition and multi-partition mode, if the specified file is "none", then no log files are created. Using a
log command in the input script will override this setting.

-screen file

Specify a file for SPPARKS to write its screen information to. In one-partition mode, if the switch is not used,
SPPARKS writes to the screen. If this switch is used, SPPARKS writes to the specified file instead and you will
see no screen output. In multi-partition mode, if the switch is not used, hi-level status information is written to the
screen. Each partition also writes to a screen.N file where N is the partition ID. If the switch is specified in
multi-partition mode, the hi-level screen dump is named "file" and each partition also writes screen information to
a file.N. For both one-partition and multi-partition mode, if the specified file is "none", then no screen output is
performed.

-var name value

Specify a variable that will be defined for substitution purposes when the input script is read. "Name" is the
variable name which can be a single character (referenced as $x in the input script) or a full string (referenced as
${abc}). The value can be any string. Using this command-line option is equivalent to putting the line "variable
name index value" at the beginning of the input script. Defining a variable as a command-line argument overrides
any setting for the same variable in the input script, since variables cannot be re-defined. See the variable
command for more info on defining variables and this section for more info on using variables in input scripts.

2.7 SPPARKS screen output

As SPPARKS reads an input script, it prints information to both the screen and a log file about significant actions
it takes to setup a simulation. When the simulation is ready to begin, SPPARKS performs various initializations
and prints the amount of memory (in MBytes per processor) that the simulation requires. An example output is
shown here, for the examples/in.potts script run on 4 processors.

SPPARKS (11 Dec 2015)
Created box = (0 0 0) to (20 20 20)
1 by 2 by 2 processor grid
Creating sites
8000 sites
8000 sites have 26 neighbors
Setting site values
8000 settings made for site
Setting up run
Memory usage per processor = 4.375 Mbytes

During the run itself, statistical information is printed periodically, for every delta of simulation time, as specified
by the stats commmand. When the run concludes, SPPARKS prints final statistical info and a total run time for
the simulation.

Time Naccept Nreject Nsweeps CPU Energy
0 0 0 0 0 205912
10.01 88437 7919563 1001 0.195 72506
20 94828 15905172 2000 0.379 57038

30 98345 23901655 3000 0.565 499438

40 101449 31898551 4000 0.749 44316
50.01 103978 39904022 5001 0.933 39334
60.01 105578 47902422 6001 1.12 36902
70.01 106938 55901062 7001 1.3 34428
80 108491 63891509 8000 1.49 31668

90 110211 71889789 9000 1.67 27994

91

100 112074 79887926 10000 1.86 21894
Loop time of 1.86084 on 4 procs

It then appends statistics about the breakdown of CPU time for the simulation.

= 1.52001 (81.6842)

) = 0 (0)

0.245275 (13.1809)
0.0892967 (4.79874)

0 (0)

= 0.00625533 (0.336157)

Solve time (%
Update time (
Comm time (%
Outpt time
App time
Other time

o°

)
)
)
)
)

—_~ o~~~
o°

o°

92

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

7. Additional tools

SPPARKS is designed to be a Monte Carlo (MC) kernel for performing kinetic MC or Metropolis MC
computations. Additional pre- and post-processing steps are often necessary to setup and analyze a simulation.
This section describes additional tools that may be useful.

Users can extend SPPARKS by writing diagnostic classes that perform desired analysis or computations. See this
section for more info.

Our group has written and released a separate toolkit called Pizza.py which provides tools which may be useful
for setup, analysis, plotting, and visualization of SPPARKS simulations. Pizza.py is written in Python and is
available for download from the Pizza.py WWW site.

Addtional scripts below are distributed with spparks under the tools directory.

® potts_quaternion/cpp_quaternion.py: enables reading spparks quaternion header files

e potts_quaternion/plot_cubic_symmetry_histograms.py: verification plots for disorientation distribution of
randomly oriented cubic structures

e potts_quaternion/plot_hcp_symmetry_histograms.py: verification plots for disorientation distribution of
randomly oriented hcp structures

93

https://spparks.github.io
https://lammps.github.io/pizza
http://www.python.org
https://lammps.github.io/pizza

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

add_reaction command
Syntax:
add_reaction ID reactantl reactant2 rate productl product2
¢ ID = string identifier for the reaction
e reactant],reactant2 = 0, 1, or 2 reactant species
® rate = reaction rate (see units below)

e productl, product2 = 0, 1, or more product species

Examples:

add_reaction 1 A B 1.0el0 C
add_reaction Dreact 1.0 d
add_reaction myReact b2 1.0e-10 c3 d4 e3

Description:
This command defines a chemical reaction for use in the app_style chemistry application.

The ID is simply a unique string (alphanumeric characters, dashes, underscores, etc) which helps identify the
reaction in an input script listing.

Each reaction has 0, 1, or 2 reactants. It also has 0, 1, or more products. The reactants and products are specified
by species ID strings, as defined by the add_species command.

The units of the specified rate constant depend on how many reactants participate in the reaction:
¢ () reactants = rate is molarity/sec
¢ | reactant = rate is 1/sec

e 2 reactants = rate is 1/molarity-sec

Thus the first reaction listed above represents an A and B molecule binding to form a complex C at a rate of
1.0e10 per molarity per second. L.e. A + B -> C.

Restrictions:

This command can only be used as part of the app_style chemistry application.
Related commands:

app_style chemistry, add_species

Default: none

94

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

add_species command
Syntax:
add_species namel name2 ...
¢ namel,name2 = ID strings for different species

Examples:

add_species kinase
add_species NFkB kinase2 NFkB-IKK

Description:

This command defines the names of one or more chemical species for use in the app_style chemistry application.

Each ID string can be any sequence of non-whitespace characters (alphanumeric, dash, underscore, etc).
Restrictions:

This command can only be used as part of the app_style chemistry application.

Related commands:

app_style chemistry, add_reaction, count

Default: none

95

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

am build command

Syntax:

am build start z num_layers N

e start = optional key word

¢ 7z = specifies elevation in SPPARKS sites of first layer
¢ num_layers = optional keyword

¢ N = specifies number of layers for this build simulation

Example 1:
am pass 1 dir X speed 9 hatch 75
am cartesian_layer 1 start LL pass_id 1 thickness 10 offset -100. 0.0
am build start 10 num_layers 2
Example 2:
am pass 1 dir X speed 9 hatch 75
am pass 1 dir Y speed 9 hatch 75
am cartesian_layer 1 start LL pass_id 1 thickness 10 offset -100. 0.0
am cartesian_layer 2 start LR pass_id 2 thickness 1 offset 0.0 -100.0

am build start 10 num_layers 4
Description:

This is an optional command used by am/ellipsoid and potts/am/weld applications to specify multilayer build
simulations. The command allows for re-use of layer specifications and implicitly creates a pattern of layers. The
build pattern is implied by the order and number of layers in the input script. As is conventional, the build
proceeds in the z-direction according to specified layer thicknesses. The am build start parameter specifies the top
surface of build plane; its important to specify this parameter if the spparks domain is thicker than a build layer
otherwise the default value will be zhi taken from region box which is probably not desired. Once all layers have
been built/simulated, the pattern repeats, cycling through the layers again and again until num_layers have been
simulated. The am build command allows for defining an arbitrary number of layers and patterns.

This command is mostly intended for SPPARKS simulations that do not use Stitch IO; nonetheless, this command
can be used with Stitch IO. Simulations using Stitch IO would normally proceed layer-by-layer using only one
layer in any particular simulation. If this command is omitted then the pattern of layers in the input script is only
simulated once.

In Example 1, one layer is simulated. Because thickness t=10, am build start z=10 is specified.
In Example 2 above, 2 layers are defined but 4 layers are simulated; layers are alternately rastered in X then Y

directions starting at the LL corner and alternately the LR corner. As in Example 1, because first layer thickness
t=10, the start value is set at am build start z=10.

96

https://spparks.github.io

Restrictions:

This command can only be used as part of the app_style am/ellipsoid app_style potts/am/weld or applications.
Related commands:

am pass, am path, am cartesian_layer am path

Default:

These are the option defaults:

e start z = the z-component of the SPPARKS region box
¢ num_Jlayers = the number of layers in the input scri