
SPPARKS Users Manual
27 Nov 2024 version

https://spparks.github.io - Sandia National Laboratories
Copyright (2008) Sandia Corporation. This software and manual is distributed under the GNU General Public License.

Table of Contents
SPPARKS Documentation...1

27 Nov 2024 version...1
Version info:...1

1. Introduction...3
1.1 What is SPPARKS..3
1.2 SPPARKS features..4
Pre- and post-processing:..4
1.3 Open source distribution...5
1.4 Acknowledgments and citations...5

2. Getting Started...6
2.1 What's in the SPPARKS distribution..6
2.2 Making SPPARKS..6
2.3 Making SPPARKS with optional packages..10
2.4 Building SPPARKS as a library...12
2.5 Running SPPARKS..13
2.6 Command-line options..14
2.7 SPPARKS screen output...15

3. Commands...17
3.1 SPPARKS input script..17
3.2 Parsing rules..18
3.3 Input script structure...18
3.4 Commands listed by category...19
3.5 Individual commands..19

4. How-to discussions..21
4.1 Running multiple simulations from one input script..21
4.2 Coupling SPPARKS to other codes..22
4.3 Library interface to SPPARKS...23

5. Example problems...25
6. Performance & scalability...26
7. Additional tools...27
8. Modifying & extending SPPARKS...28

Application styles..29
Diagnostic styles...29
Input script commands..30
Solve styles...30

9. Errors...31
9.1 Common problems..31
9.2 Reporting bugs..32
9.3 Error & warning messages..32
Errors:...32
Warnings:..42

...44
SPPARKS Documentation...44

27 Nov 2024 version...44
Version info:...44

3. Commands...46
3.1 SPPARKS input script..46
3.2 Parsing rules..47

SPPARKS Users Manual

i

Table of Contents
3.3 Input script structure...47
3.4 Commands listed by category...48
3.5 Individual commands..48

9. Errors...50
9.1 Common problems..50
9.2 Reporting bugs..51
9.3 Error & warning messages..51
Errors:...51
Warnings:..61

5. Example problems...62
10. Future plans...63
4. How-to discussions..64

4.1 Running multiple simulations from one input script..64
4.2 Coupling SPPARKS to other codes..65
4.3 Library interface to SPPARKS...66

1. Introduction...68
1.1 What is SPPARKS..68
1.2 SPPARKS features..69
Pre- and post-processing:..69
1.3 Open source distribution...70
1.4 Acknowledgments and citations...70

8. Modifying & extending SPPARKS...71
Application styles..72
Diagnostic styles...72
Input script commands..73
Solve styles...73

6. Performance & scalability...74
9. Python interface to SPPARKS..75

9.1 Building SPPARKS as a shared library..76
9.2 Installing the Python wrapper into Python..76
9.3 Extending Python with MPI to run in parallel..77
9.4 Testing the Python-SPPARKS interface...78
9.5 Using SPPARKS from Python..80
9.6 Example Python scripts that use SPPARKS...81

2. Getting Started...82
2.1 What's in the SPPARKS distribution..82
2.2 Making SPPARKS..82
2.3 Making SPPARKS with optional packages..86
2.4 Building SPPARKS as a library...88
2.5 Running SPPARKS..89
2.6 Command-line options..90
2.7 SPPARKS screen output...91

7. Additional tools...93
add_reaction command..94
add_species command...95
am build command..96
am cartesian_layer command..98
am pass command..100

SPPARKS Users Manual

ii

Table of Contents
am path command..102
am path_layer command..104
am pathgen command..106
app_style am/ellipsoid command..108
app_style chemistry command..111
app_style diffusion command..112
app_style diffusion/multiphase command...115
app_style erbium command...117
app_style ising command..119
app_style ising/single command..119
app_style membrane command...121
app_style phasefield/potts command...123
app_style potts command..125
app_style potts/neigh command..125
app_style potts/neighonly command...125
app_style potts/am/bezier command...127
app_style potts/am/path/gen command...132
app_style potts/am/weld command...134
app_style potts/grad command..136
app_style potts/pin command..138
app_style potts/quaternion command..140
app_style potts/strain command..142
app_style potts/strain/pin command..144
app_style potts/weld command...145
app_style potts/weld/jom command..148
app_style relax command..150
app_style sinter command...151
app_style sos command...154
app_style command...156
app_style test/group command..158
barrier command..160
boundary command...162
clear command...163
count command...164
create_box command...165
create_sites command..166
deep_length command...171
deep_width command..172
deposition command..173
diag_style array command...175
diag_style cluster command..176
diag_style diffusion command..178
diag_style energy command..179
diag_style erbium command..180
diag_style propensity command..181
diag_style sinter_avg_neck_area command..182
diag_style sinter_density command..183
diag_style sinter_free_energy_pore command..184

SPPARKS Users Manual

iii

Table of Contents
diag_style sinter_pore_curvature command..185
diag_style command..186
diffusion/multiphase command...188
dimension command..190
dump command...191
dump image command..191
dump image command..196
dump_modify command..202
dump_one command...210
echo command...211
ecoord command...212
ellipsoid_depth command..213
event command..214
event_ratios command...216
event_temperatures command...217
if command..218
include command...219
inclusion command..220
jump command..221
label command...222
lattice command...223
log command...225
next command...226
pair_coeff command..228
pair_style lj command...230
pair_style command...232
pin command...233
potts/am/bezier command..234
print command...235
processors command...236
pulse command..237
read_sites command..238
region command..242
reset_time command..244
run command...245
sector command...247
seed command...249
set command..250
shell command...253
app_style command...255
app_style command...256
solve_style command..257
app_style command...259
stats command...260
sweep command..262
temperature command...264
time_sinter_start command...265
undump command...266

SPPARKS Users Manual

iv

Table of Contents
variable command...267
volume command..271
weld_shape_ellipse command...272
weld_shape_teardrop command..273

SPPARKS Users Manual

v

SPPARKS Documentation

27 Nov 2024 version

Version info:

The SPPARKS "version" is the date when it was released, such as 12 Jun 2018. SPPARKS is updated
continuously. Whenever we fix a bug or add a feature, we release it immediately, and post a notice on this page of
the WWW site. Each dated copy of SPPARKS contains all the features and bug-fixes up to and including that
version date. The version date is printed to the screen and logfile every time you run SPPARKS. It is also in the
file src/version.h and in the SPPARKS directory name created when you unpack a tarball.

If you browse the HTML or PDF doc pages on the SPPARKS WWW site, they always describe the most
current version of SPPARKS.

•

If you browse the HTML or PDF doc pages included in your tarball, they describe the version you have.•

SPPARKS stands for Stochastic Parallel PARticle Kinetic Simulator.

SPPARKS is a kinetic Monte Carlo (KMC) code designed to run efficiently on parallel computers using both
KMC and Metropolis Monte Carlo algorithms. It was developed at Sandia National Laboratories, a US
Department of Energy facility, with funding from the DOE. It is an open-source code, distributed freely under the
terms of the GNU Public License (GPL), or sometimes by request under the terms of the GNU Lesser General
Public License (LGPL).

The SPPARKS website has more information about the code and publications that desribe it. The current
SPPARKS developers are John Mitchell (Sandia National Labs) and Steve Plimpton. They can be contacted at
jamitch@sandia.gov and sjplimp@gmail.com respectively. Past developers and other significant code
contributores are listed on the Authors page of the website.

The SPPARKS documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to the developers so we can
improve the SPPARKS documentation.

Once you are familiar with SPPARKS, you may want to bookmark this page at Section_commands.html#comm
since it gives quick access to documentation for all SPPARKS commands.

PDF file of the entire manual, generated by htmldoc

Introduction
1.1 What is SPPARKS
1.2 SPPARKS features
1.3 Open source distribution
1.4 Acknowledgments and citations

1.

Getting started
2.1 What's in the SPPARKS distribution
2.2 Making SPPARKS
2.3 Making SPPARKS with optional packages
2.4 Building SPPARKS as a library
2.5 Running SPPARKS
2.6 Command-line options
2.7 SPPARKS screen output

2.

Commands3.

1

https://spparks.github.io/bug.html
https://spparks.github.io/bug.html
https://spparks.github.io
https://sjplimp.github.io
https://spparks.github.io/authors.html
http://freecode.com/projects/htmldoc

3.1 SPPARKS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically
How-to discussions
4.1 Running multiple simulations from one input script
4.2 Coupling SPPARKS to other codes
4.3 Library interface to SPPARKS

4.

Example problems5.
Performance & scalability6.
Additional tools7.
Modifying & Extending SPPARKS8.
Python interface
9.1 Building SPPARKS as a shared library
9.2 Installing the Python wrapper into Python
9.3 Extending Python with MPI to run in parallel
9.4 Testing the Python-SPPARKS interface
9.5 Using SPPARKS from Python
9.6 Example Python scripts that use SPPARKS

9.

Errors
10.1 Common problems
10.2 Reporting bugs
10.3 Error & warning messages

10.

Future plans11.

2

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

1. Introduction

These sections provide an overview of what SPPARKS can do, describe what it means for SPPARKS to be an
open-source code, and acknowledge the funding and people who have contributed to SPPARKS.

1.1 What is SPPARKS
1.2 SPPARKS features
1.3 Open source distribution
1.4 Acknowledgments and citations

1.1 What is SPPARKS

SPPARKS is a Monte Carlo code that has algorithms for kinetic Monte Carlo (KMC), rejection KMC (rKMC),
and Metropolis Monte Carlo (MMC). On-lattice and off-lattice applications with spatial sites on which "events"
occur can be simulated in parallel.

KMC is also called true KMC or rejection-free KMC. rKMC is also called null-event MC. In a generic sense the
code's KMC and rKMC solvers catalog a list of events, each with an associated probability, choose a single event
to perform, and advance time by the correct amount. Events may be chosen individually at random, or a sweep of
enumarated sites can be performed to select possible events in a more ordered fashion.

Note that rKMC is different from Metropolis MC, which is sometimes called thermodynamic-equilibrium MC or
barrier-free MC, in that rKMC still uses rates to define events, often associated with the rate for the system to
cross some energy barrier. Thus both KMC and rKMC track the dynamic evolution of a system in a time-accurate
manner as events are performed. Metropolis MC is typically used to sample states from a system in equilibrium or
to drive a system to equilibrium (energy minimization). It does this be performing (possibly) non-physical events.
As such it has no requirement to sample events with the correct relative probabilities or to limit itself to physical
events (e.g. it can change an atom to a new species). Because of this it also does not evolve the system in a
time-accurate manner; in general there is no "time" associated with Metropolis MC events.

Applications are implemented in SPPARKS which define events and their probabilities and acceptance/rejection
criteria. They are coupled to solvers or sweepers to perform KMC or rKMC simulations. The KMC or rKMC
options for an application in SPPARKS can be written to define rates based on energy differences between the
initial and final state of an event and a Metropolis-style accept/reject criterion based on the Boltzmann factor
SPPARKS will then perform a Metropolis-style Monte Carlo simulation.

In parallel, a geometric partitioning of the simulation domain is performed. Sub-partitioning of processor domains
into colors or quadrants (2d) and octants (3d) is done to enable multiple events to be performed on multiple
processors simultaneously. Communication of boundary information is performed as needed.

Parallelism can also be invoked to perform multiple runs on a collection of processors, for statistical puposes.

SPPARKS is designed to be easy to modify and extend. For example, new solvers and sweeping rules can be
added, as can new applications. Applications can define new commands which are read from the input script.

SPPARKS is written in C++. It runs on single-processor desktop or laptop machines, but for some applications,
can also run on parallel computers. SPPARKS will run on any parallel machine that compiles C++ and supports
the MPI message-passing library. This includes distributed- or shared-memory machines.

3

https://spparks.github.io
http://www-unix.mcs.anl.gov/mpi

SPPARKS is a freely-available open-source code. See the SPPARKS WWW Site for download information. It is
distributed under the terms of the GNU Public License (GPL), or sometimes by request under the terms of the
GNU Lesser General Public License (LGPL), which means you can use or modify the code however you wish.
The only restrictions imposed by the GPL or LGPL are on how you distribute the code further. See this section for
a brief discussion of the open-source philosophy.

1.2 SPPARKS features

These are three kinds of applications in SPPARKS:

on-lattice•
off-lattice•
general•

On-lattice applications define static event sites with a fixed neighbor connectivity. Off-lattice applications define
mobile event sites such as particles. A particle's neighbors are typically specified by a cutoff distance. General
applications have no spatial component.

The set of on-lattice applications currently in SPPARKS are:

diffusion model•
Ising model•
Potts model in many variants•
membrane model•
sintering model•

The set of off-lattice applications currently in SPPARKS are:

Metropolis atomic relaxation model•

The set of general applications currently in SPPARKS are:

biochemcial reaction network model•
test driver for solvers using a synthetic biochemical network•

These are the KMC solvers currently available in SPPARKS and their scaling properties:

linear search, O(N)•
tree search, O(logN)•
composition-rejection search, O(1)•

Pre- and post-processing:

Our group has written and released a separate toolkit called Pizza.py which provides tools which can be used to
setup, analyze, plot, and visualize data for SPPARKS simulations. Pizza.py is written in Python and is available
for download from the Pizza.py WWW site.

4

https://spparks.github.io
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/licenses/lgpl-2.1.html
https://lammps.github.io/pizza
http://www.python.org
https://lammps.github.io/pizza

1.3 Open source distribution

SPPARKS comes with no warranty of any kind. As each source file states in its header, it is a copyrighted code
that is distributed free-of- charge, under the terms of the GNU Public License (GPL), or sometimes by request
under the terms of the GNU Lesser General Public License (LGPL). This is often referred to as open-source
distribution - see www.gnu.org or www.opensource.org for more details. The legal text of the GPL or LGPL is in
the LICENSE file that is included in the SPPARKS distribution.

Here is a summary of what the GPL means for SPPARKS users:

(1) Anyone is free to use, modify, or extend SPPARKS in any way they choose, including for commercial
purposes.

(2) If you distribute a modified version of SPPARKS, it must remain open-source, meaning you distribute source
code under the terms of the GPL. You should clearly annotate such a code as a derivative version of SPPARKS.

(3) If you distribute any code that used SPPARKS source code, including calling it as a library, then that must
also be open-source, meaning you distribute its source code under the terms of the GPL.

(4) If you give SPPARKS files to someone else, the GPL LICENSE file and source file headers (including the
copyright and GPL notices) should remain part of the code.

In the spirit of an open-source code, if you use SPPARKS for something useful or if you fix a bug or add a new
feature or applicaton to the code, let us know. We would like to include your contribution in the released version
of the code and/or advertise your success on our WWW page.

1.4 Acknowledgments and citations

SPPARKS is distributed by Sandia National Laboratories. SPPARKS development has been funded by the US
Department of Energy (DOE), through its LDRD and ASC programs.

The Authors page of the SPPARKS website lists the developers and their contact info, along with others who
have contributed code and expertise to the developement of SPPARKS.

5

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/licenses/lgpl-2.1.html
http://www.gnu.org
http://www.opensource.org
http://www.sandia.gov
http://www.doe.gov
http://www.doe.gov
https://spparks.github.io/authors.html

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

2. Getting Started

This section describes how to unpack, make, and run SPPARKS.

2.1 What's in the SPPARKS distribution
2.2 Making SPPARKS
2.3 Making SPPARKS with optional packages
2.4 Building SPPARKS as a library
2.5 Running SPPARKS
2.6 Command-line options
2.7 SPPARKS screen output

2.1 What's in the SPPARKS distribution

When you download SPPARKS you will need to unzip and untar the downloaded file with the following
commands, after placing the tarball in an appropriate directory.

gunzip spparks*.tar.gz
tar xvf spparks*.tar

This will create a spparks directory containing two files and several sub-directories:

README text file
LICENSE the GNU General Public License (GPL)
doc documentation
examples test problems
python Python wrapper
src source files
tools auxiliary tools

2.2 Making SPPARKS

This section has the following sub-sections:

Read this first•
Building a SPPARKS executable•
Common errors that can occur when making SPPARKS•
Editing a new low-level Makefile•
Additional build tips•
Building for a Mac•
Building for Windows•

Read this first:

Building SPPARKS can be non-trivial. You will likely need to edit a makefile, there are compiler options,
additional libraries can be used (MPI, JPEG), etc. Please read this section carefully. If you are not comfortable
with makefiles, or building codes on a Unix platform, or running an MPI job on your machine, please find a local
expert to help you.

6

https://spparks.github.io

Building a SPPARKS executable:

The src directory contains the C++ source and header files for SPPARKS. It also contains a top-level Makefile
and a MAKE sub-directory with low-level Makefile.* files for several machines. From within the src directory,
type "make" or "gmake". You should see a list of available choices. If one of those is the machine and options you
want, say serial or mpi or linux, then type one of the commands:

make serial
make mpi
gmake linux

Try the "serial" and "mpi" targets first, since they are generic and should typically work on any machine,
assuming you have the GNU g++ compiler (for the serial version) and MPI installed (for the mpi version).

Note that on a multi-processor or multi-core platform you can launch a parallel make, by using the "-j" switch
with the make command, which will typically build SPPARKS more quickly.

If you get no errors and an executable like spk_serial or spk_mpi is produced, you're done; it's your lucky day.

IMPORTANT NOTE: You need a C++ compiler that is C++11 compliant to build SPPARKS. Almost all current
C++ compilers are; you just need to use a -std=c++11 flag when compiling, as in the
src/MAKE/Makefile.machine files provided with SPPARKS.

Common errors that can occur when making SPPARKS:

(1) If the make command breaks immediately with errors that indicate it can't find files with a "*" in their names,
this can be because your machine's make doesn't support wildcard expansion in a makefile. Try gmake instead of
make.

(2) Other errors typically occur because the low-level Makefile isn't setup correctly for your machine. If your
platform is named "foo", you need to create a Makefile.foo in the MAKE sub-directory. Use whatever existing
file is closest to your platform as a starting point. See the next section for more instructions.

Editing a new low-level Makefile.foo:

These are the issues you need to address when editing a low-level Makefile for your machine. With a couple
exceptions, the only portion of the file you should need to edit is the "System-specific Settings" section.

(1) Change the first line of Makefile.foo to include the word "foo" and whatever other options you set. This is the
line you will see if you just type "make".

(2) The "compiler/linker settings" section lists compiler and linker settings for your C++ compiler, including path
and optimization flags. You can use g++, the open-source GNU compiler, which is available on all Unix systems.
You can also use mpicc which will typically be available if MPI is installed on your system, though you should
check which actual compiler it wraps. You can also point to a specific compiler; for example see
MAKE/Makefile.spencer.gnu where an environment variable MPI_HOME is used to specify path to mpicxx and
mpicc compilers.

Vendor compilers often produce faster code. On boxes with Intel CPUs, we suggest using the commercial Intel
icc compiler, which can be downloaded from Intel's compiler site.

7

http://www.intel.com/software/products/noncom

If building a C++ code on your machine requires additional libraries, then you should list them as part of the LIB
variable.

The DEPFLAGS setting is what triggers the C++ compiler to create a dependency list for a source file. This
speeds re-compilation when source (*.cpp) or header (*.h) files are edited. Some compilers do not support
dependency file creation, or may use a different switch than -D. GNU g++ works with -D. If your compiler can't
create dependency files (a long list of errors involving *.d files), then you'll need to create a Makefile.foo
patterned after Makefile.storm, which uses different rules that do not involve dependency files.

(3) The "system-specific settings" section has 3 parts.

(3.a) The SPK_INC variable is used to include options that turn on system-dependent ifdefs within the SPPARKS
code. The settings that are currently recogized are:

-DSPPARKS_GZIP•
-DSPPARKS_JPEG•
-DSPPARKS_SMALLBIG•
-DSPPARKS_BIGBIG•
-DSPPARKS_SMALLSMALL•

The read_sites and dump commands will read/write gzipped files if you compile with -DSPPARKS_GZIP. It
requires that your Unix support the "popen" command.

If you use -DSPPARKS_JPEG, the dump image command will be able to write out JPEG image files. If not, it
will only be able to write out text-based PPM image files. For JPEG files, you must also link SPPARKS with a
JPEG library. See section (3.c) below for more details on this.

Use at most one of the -DSPPARKS_SMALLBIG, -DSPPARKS_BIGBIG, -DSPPARKS_SMALLSMALL
settings. The default is -DSPPARKS_SMALLBIG. These settings refer to use of 4-byte (small) vs 8-byte (big)
integers within SPPARKS, as specified in src/spktype.h. The only reason to use the BIGBIG setting is to enable
simulation of systems with more than 2 billion sites. Normally, the only reason to use SMALLSMALL is if your
machine does not support 64-bit integers. See the Additional build tips section below for more details on these
settings.

(3.b) The 3 MPI variables are used to specify an MPI library to build SPPARKS with.

If you want SPPARKS to run in parallel, you must have an MPI library installed on your platform. If you use an
MPI-wrapped compiler, such as "mpicc" to build SPPARKS, you can probably leave these 3 variables blank. If
you do not use "mpicc" as your compiler/linker, then you need to specify where the mpi.h file (MPI_INC) and the
MPI library (MPI_PATH) is found and its name (MPI_LIB).

If you are installing MPI yourself, we recommend Argonne's MPICH 1.2 or 2.0 or OpenMPI. MPICH can be
downloaded from the Argonne MPI site. OpenMPI can be downloaded the OpenMPI site. LAM MPI should also
work. If you are running on a big parallel platform, your system people or the vendor should have already
installed a version of MPI, which will be faster than MPICH or OpenMPI or LAM, so find out how to build and
link with it. If you use MPICH or OpenMPI or LAM, you will have to configure and build it for your platform.
The MPI configure script should have compiler options to enable you to use the same compiler you are using for
the SPPARKS build, which can avoid problems that can arise when linking SPPARKS to the MPI library.

If you just want SPPARKS to run on a single processor, you can use the STUBS library in place of MPI, since
you don't need a true MPI library installed on your system. See the Makefile.serial file for how to specify the 3
MPI variables. You will also need to build the STUBS library for your platform before making SPPARKS itself.

8

http://www-unix.mcs.anl.gov/mpi
http://www.open-mpi.org

From the STUBS dir, type "make" and it will hopefully create a libmpi.a suitable for linking to SPPARKS. If this
build fails, you will need to edit the STUBS/Makefile for your platform.

The file STUBS/mpi.cpp has a CPU timer function MPI_Wtime() that calls gettimeofday() . If your system
doesn't support gettimeofday() , you'll need to insert code to call another timer. Note that the ANSI-standard
function clock() rolls over after an hour or so, and is therefore insufficient for timing long SPPARKS simulations.

(3.c) The 3 JPG variables are used to specify a JPEG library which SPPARKS uses when writing a JPEG file via
the dump image command. These can be left blank if you are not using the -DSPPARKS_JPEG switch discussed
above in section (3.a).

A standard JPEG library usually goes by the name libjpeg.a and has an associated header file jpeglib.h.
Whichever JPEG library you have on your platform, you'll need to set the appropriate JPG_INC, JPG_PATH, and
JPG_LIB variables in Makefile.foo so that the compiler and linker can find it.

That's it. Once you have a correct Makefile.foo and you have pre-built any other libraries it will use (e.g. MPI,
JPEG), all you need to do from the src directory is type one of these 2 commands:

That's it. Once you have a correct Makefile.foo and you have pre-built the MPI library it uses, all you need to do
from the src directory is type one of these 2 commands:

make foo
gmake foo

You should get the executable spk_foo when the build is complete.

Additional build tips:

(1) Building SPPARKS for multiple platforms.

You can make SPPARKS for multiple platforms from the same src directory. Each target creates its own object
sub-directory called Obj_name where it stores the system-specific *.o files.

(2) Cleaning up.

Typing "make clean" will delete all *.o object files created when SPPARKS is built.

(3) Changing the SPPARKS size limits via -DSPPARKS_SMALLBIG or -DSPPARKS_BIGBIG or
-DSPPARKS_SMALLSMALL

As explained above, any of these 3 settings can be specified on the SPK_INC line in your low-level
src/MAKE/Makefile.foo.

The default is -DSPPARKS_SMALLBIG which allows for systems with up to 2^31 sites (about 2 billion). This is
because the site IDs are stored in 32-bit integers.

To allow for larger systems, compile with -DSPPARKS_BIGBIG. This stores site IDs in 64-bit integers. This
enables systems with up to 2^63 sites (about 9e18).

If your system does not support 8-byte integers, you will need to compile with the -DSPPARKS_SMALLSMALL
setting. This will restrict the total number of sites to 2^31 (about 2 billion), as well as store some simulation
statistics in 4-byte integers.

9

Note that in src/lmptype.h there are definitions of all these data types as well as the MPI data types associated
with them. The MPI types need to be consistent with the associated C data types, or else SPPARKS will generate
a run-time error. As far as we know, the settings defined in src/spktype.h are portable and work on every current
system.

In all cases, the size of problem that can be run on a per-processor basis is limited by 4-byte integer storage to
2^31 sites per processor (about 2 billion). This should not normally be a limitation since such a problem would
have a huge per-processor memory and would run very slowly in terms of CPU secs per Monte Carlo interation.

Building for a Mac:

OS X is BSD Unix, so it already works. See the Makefile.mac file.

Building for Windows:

SPPARKS is just C++ with MPI calls, so it should be possible to build it for a Windows box, either using a Linux
installation such as cygwin (see src/MAKE/Makefile.cygwin), or importing the source files into Visual Studio
C++ and building it there. For the latter you are on your own. The SPPARKS developers do not use Windows.
But if you figure out how to do it, or create a Visual Studio project that works, please let us know, and we can
release the instructions/files for how to do this as part of SPPARKS.

2.3 Making SPPARKS with optional packages

The source code for SPPARKS is structured as a large set of core files which are always used, plus optional
packages, which are groups of files that enable a specific set of features. You can see the list of both standard and
user-contributed packages by typing "make package".

Currently there is only one optional package: STITCH. It is dicussed more below.

Any or all packages can be included or excluded when SPPARKS is built. You may wish to exclude certain
packages if you will never run certain kinds of simulations.

By default, SPPARKS includes no packages.

Packages are included or excluded by typing "make yes-name" or "make no-name", where "name" is the name of
the package. You can also type "make yes-all" or "make no-all" to include/exclude all packages. These commands
work by simply moving files back and forth between the main src directory and sub-directories with the package
name, so that the files are seen or not seen when SPPARKS is built. After you have included or excluded a
package, you must re-build SPPARKS.

Additional make options exist to help manage SPPARKS files that exist in both the src directory and in package
sub-directories. You do not normally need to use these commands unless you are editing SPPARKS files or have
downloaded a patch from the SPPARKS WWW site. Typing "make package-update" will overwrite src files with
files from the package directories if the package has been included. It should be used after a patch is installed,
since patches only update the master package version of a file. Typing "make package-overwrite" will overwrite
files in the package directories with src files. Typing "make package-check" will list differences between src and
package versions of the same files.

2.3.1 STITCH package

The STITCH package allows SPPARKS to use the Stitch library for I/O, which is included in the SPPARKS
distribution in lib/stitch. At some point the Stitch library will have its own website and will also be downloadable

10

there.

Stitch is an efficient I/O API and database format with a native python interface. Stitch files can read in to start a
simulation and/or output during a simulation. A novel aspect of stitch is that it enables out-of-core computations
by building a simulation domain analogously to the way an additive manufactured (AM) part is built. It merges
outputs written over time to efficiently construct a much larger simulation domain that would otherwise be
impossible to model in one simulation. Stitching workflows can be created to perform multiple SPPARKS
simulations representing an additive manufacturing process; such simulations can produce huge numbers of lattice
sites representing an entire AM build that would otherwise be impossible to simulate due to length scale and
computational resource limitations. Stitch is intended and primarily focused on microstructural evolution
simulations such as welding and additive manufacturing but other applications may be possible.

Building SPPARKS with the STITCH package enables these commands to use stitch-related options:

dump stitch•
set stitch•
reset_time•

See the am_path and stitch sub-directories in the examples directory for models and scripts which use the Stitch
library.

You can build SPPARKS with stitch support in one of 3 ways.

(1) From the src directory using make

% cd spparks/src
% make lib-stitch args="-b" # build the Stitch library and set links to it
% make yes-stitch # install the STITCH package
% make mpi # or whichever machine target you wish

(2) From the lib directory using Install.py

% cd spparks/lib
% python Install.py -b # build the Stitch library and set links to it
% cd spparks/src
% make yes-stitch # install the STITCH package
% make mpi # or whichever machine target you wish

(3) Manual build of the Stitch library you have downloaded to your system

% cd $STITCHDIR # STITCHDIR = the Stitch library directory
% make # build Stitch with default Makefile
% make -f Makefile.custom # build Stitch with custom Makefile
% cd spparks/lib/stitch
% ln -s $STITCHDIR liblink # set two links in SPPARKS lib/stitch
% ln -s $STITCHDIR includelink
% cd spparks/src
% make yes-stitch # install the STITCH package
% make mpi # or whichever machine target you wish

To un-install the STITCH package from SPPARKS, do the following:

% cd spparks/src
% make no-stitch # un-install the STITCH package files
% make mpi # re-build SPPARKS w/out the STITCH package

11

2.4 Building SPPARKS as a library

SPPARKS can be built as either a static or shared library, which can then be called from another application or a
scripting language. See this section for more info on coupling SPPARKS to other codes. See this section for more
info on wrapping and running SPPARKS from Python.

Static library:

To build SPPARKS as a static library (*.a file on Linux), type

make makelib
make -f Makefile.lib foo

where foo is the machine name. This kind of library is typically used to statically link a driver application to
SPPARKS, so that you can insure all dependencies are satisfied at compile time. Note that inclusion or exclusion
of any desired optional packages should be done before typing "make makelib". The first "make" command will
create a current Makefile.lib with all the file names in your src dir. The second "make" command will use it to
build SPPARKS as a static library, using the ARCHIVE and ARFLAGS settings in src/MAKE/Makefile.foo. The
build will create the file libspparks_foo.a which another application can link to.

Shared library:

To build SPPARKS as a shared library (*.so file on Linux), which can be dynamically loaded, e.g. from Python,
type

make makeshlib
make -f Makefile.shlib foo

where foo is the machine name. This kind of library is required when wrapping SPPARKS with Python; see
Section_python for details. Again, note that inclusion or exclusion of any desired optional packages should be
done before typing "make makelib". The first "make" command will create a current Makefile.shlib with all the
file names in your src dir. The second "make" command will use it to build SPPARKS as a shared library, using
the SHFLAGS and SHLIBFLAGS settings in src/MAKE/Makefile.foo. The build will create the file
libspparks_foo.so which another application can link to dyamically. It will also create a soft link libspparks.so,
which the Python wrapper uses by default.

Note that for a shared library to be usable by a calling program, all the auxiliary libraries it depends on must also
exist as shared libraries. This will be the case for libraries included with SPPARKS, such as the dummy MPI
library in src/STUBS since they are always built as shared libraries with the -fPIC switch. However, if a library
like MPI does not exist as a shared library, the second make command will generate an error. This means you will
need to install a shared library version of the package. The build instructions for the library should tell you how to
do this.

As an example, here is how to build and install the MPICH library, a popular open-source version of MPI,
distributed by Argonne National Labs, as a shared library in the default /usr/local/lib location:

./configure --enable-shared
make
make install

You may need to use "sudo make install" in place of the last line if you do not have write privileges for
/usr/local/lib. The end result should be the file /usr/local/lib/libmpich.so.

12

http://www-unix.mcs.anl.gov/mpi

Additional requirement for using a shared library:

The operating system finds shared libraries to load at run-time using the environment variable
LD_LIBRARY_PATH. So you may wish to copy the file src/libspparks.so or src/libspparks_g++.so (for
example) to a place the system can find it by default, such as /usr/local/lib, or you may wish to add the SPPARKS
src directory to LD_LIBRARY_PATH, so that the current version of the shared library is always available to
programs that use it.

For the csh or tcsh shells, you would add something like this to your ~/.cshrc file:

setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:/home/sjplimp/spparks/src

Calling the SPPARKS library:

Either flavor of library (static or shared0 allows one or more SPPARKS objects to be instantiated from the calling
program.

When used from a C++ program, all of SPPARKS is wrapped in a SPPARKS_NS namespace; you can safely use
any of its classes and methods from within the calling code, as needed.

When used from a C or Fortran program or a scripting language like Python, the library has a simple
function-style interface, provided in src/library.cpp and src/library.h.

See the sample codes in examples/COUPLE/simple for examples of C++ and C and Fortran codes that invoke
SPPARKS thru its library interface. There are other examples as well in the COUPLE directory which are
discussed in Section_howto 2 of the manual. See Section_python of the manual for a description of the Python
wrapper provided with SPPARKS that operates through the SPPARKS library interface.

The files src/library.cpp and library.h define the C-style API for using SPPARKS as a library. See Section_howto
3 of the manual for a description of the interface and how to extend it for your needs.

2.5 Running SPPARKS

By default, SPPARKS runs by reading commands from stdin; e.g. spk_linux < in.file. This means you first create
an input script (e.g. in.file) containing the desired commands. This section describes how input scripts are
structured and what commands they contain.

You can test SPPARKS on any of the sample inputs provided in the examples directory. Input scripts are named
in.* and sample outputs are named log.*.name.P where name is a machine and P is the number of processors it
was run on.

Here is how you might run the Potts model tests on a Linux box, using mpirun to launch a parallel job:

cd src
make linux
cp spk_linux ../examples/lj
cd ../examples/potts
mpirun -np 4 spk_linux <in.potts

The screen output from SPPARKS is described in a section below. As it runs, SPPARKS also writes a log.spparks
file with the same information.

Note that this sequence of commands copies the SPPARKS executable (spk_linux) to the directory with the input
files. This may not be necessary, but some versions of MPI reset the working directory to where the executable is,

13

rather than leave it as the directory where you launch mpirun from (if you launch spk_linux on its own and not
under mpirun). If that happens, SPPARKS will look for additional input files and write its output files to the
executable directory, rather than your working directory, which is probably not what you want.

If SPPARKS encounters errors in the input script or while running a simulation it will print an ERROR message
and stop or a WARNING message and continue. See this section for a discussion of the various kinds of errors
SPPARKS can or can't detect, a list of all ERROR and WARNING messages, and what to do about them.

SPPARKS can run a problem on any number of processors, including a single processor. SPPARKS can run as
large a problem as will fit in the physical memory of one or more processors. If you run out of memory, you must
run on more processors or setup a smaller problem.

2.6 Command-line options

At run time, SPPARKS recognizes several optional command-line switches which may be used in any order. For
example, spk_ibm might be launched as follows:

mpirun -np 16 spk_ibm -var f tmp.out -log my.log -screen none <in.alloy

These are the command-line options:

-echo style

Set the style of command echoing. The style can be none or screen or log or both. Depending on the style, each
command read from the input script will be echoed to the screen and/or logfile. This can be useful to figure out
which line of your script is causing an input error. The default value is log. The echo style can also be set by using
the echo command in the input script itself.

-partition 8x2 4 5 ...

Invoke SPPARKS in multi-partition mode. When SPPARKS is run on P processors and this switch is not used,
SPPARKS runs in one partition, i.e. all P processors run a single simulation. If this switch is used, the P
processors are split into separate partitions and each partition runs its own simulation. The arguments to the
switch specify the number of processors in each partition. Arguments of the form MxN mean M partitions, each
with N processors. Arguments of the form N mean a single partition with N processors. The sum of processors in
all partitions must equal P. Thus the command "-partition 8x2 4 5" has 10 partitions and runs on a total of 25
processors.

The input script specifies what simulation is run on which partition; see the variable and next commands. This
howto section gives examples of how to use these commands in this way. Simulations running on different
partitions can also communicate with each other; see the temper command.

-in file

Specify a file to use as an input script. This is an optional switch when running SPPARKS in one-partition mode.
If it is not specified, SPPARKS reads its input script from stdin - e.g. spk_linux < in.run. This is a required switch
when running SPPARKS in multi-partition mode, since multiple processors cannot all read from stdin.

-log file

Specify a log file for SPPARKS to write status information to. In one-partition mode, if the switch is not used,
SPPARKS writes to the file log.spparks. If this switch is used, SPPARKS writes to the specified file. In
multi-partition mode, if the switch is not used, a log.SPPARKS file is created with hi-level status information.

14

Each partition also writes to a log.SPPARKS.N file where N is the partition ID. If the switch is specified in
multi-partition mode, the hi-level logfile is named "file" and each partition also logs information to a file.N. For
both one-partition and multi-partition mode, if the specified file is "none", then no log files are created. Using a
log command in the input script will override this setting.

-screen file

Specify a file for SPPARKS to write its screen information to. In one-partition mode, if the switch is not used,
SPPARKS writes to the screen. If this switch is used, SPPARKS writes to the specified file instead and you will
see no screen output. In multi-partition mode, if the switch is not used, hi-level status information is written to the
screen. Each partition also writes to a screen.N file where N is the partition ID. If the switch is specified in
multi-partition mode, the hi-level screen dump is named "file" and each partition also writes screen information to
a file.N. For both one-partition and multi-partition mode, if the specified file is "none", then no screen output is
performed.

-var name value

Specify a variable that will be defined for substitution purposes when the input script is read. "Name" is the
variable name which can be a single character (referenced as $x in the input script) or a full string (referenced as
${abc}). The value can be any string. Using this command-line option is equivalent to putting the line "variable
name index value" at the beginning of the input script. Defining a variable as a command-line argument overrides
any setting for the same variable in the input script, since variables cannot be re-defined. See the variable
command for more info on defining variables and this section for more info on using variables in input scripts.

2.7 SPPARKS screen output

As SPPARKS reads an input script, it prints information to both the screen and a log file about significant actions
it takes to setup a simulation. When the simulation is ready to begin, SPPARKS performs various initializations
and prints the amount of memory (in MBytes per processor) that the simulation requires. An example output is
shown here, for the examples/in.potts script run on 4 processors.

SPPARKS (11 Dec 2015)
Created box = (0 0 0) to (20 20 20)
 1 by 2 by 2 processor grid
Creating sites ...
 8000 sites
 8000 sites have 26 neighbors
Setting site values ...
 8000 settings made for site
Setting up run ...
Memory usage per processor = 4.375 Mbytes

During the run itself, statistical information is printed periodically, for every delta of simulation time, as specified
by the stats commmand. When the run concludes, SPPARKS prints final statistical info and a total run time for
the simulation.

 Time Naccept Nreject Nsweeps CPU Energy
 0 0 0 0 0 205912
 10.01 88437 7919563 1001 0.195 72506
 20 94828 15905172 2000 0.379 57038
 30 98345 23901655 3000 0.565 49948
 40 101449 31898551 4000 0.749 44316
 50.01 103978 39904022 5001 0.933 39334
 60.01 105578 47902422 6001 1.12 36902
 70.01 106938 55901062 7001 1.3 34428
 80 108491 63891509 8000 1.49 31668
 90 110211 71889789 9000 1.67 27994

15

 100 112074 79887926 10000 1.86 21894
Loop time of 1.86084 on 4 procs

It then appends statistics about the breakdown of CPU time for the simulation.

Solve time (%) = 1.52001 (81.6842)
Update time (%) = 0 (0)
Comm time (%) = 0.245275 (13.1809)
Outpt time (%) = 0.0892967 (4.79874)
App time (%) = 0 (0)
Other time (%) = 0.00625533 (0.336157)

16

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

3. Commands

This section describes how a SPPARKS input script is formatted and what commands are used to define a
simulation.

3.1 SPPARKS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically

3.1 SPPARKS input script

SPPARKS executes by reading commands from a input script (text file), one line at a time. When the input script
ends, SPPARKS exits. Each command causes SPPARKS to take some action. It may set an internal variable, read
in a file, or run a simulation. Most commands have default settings, which means you only need to use the
command if you wish to change the default.

In many cases, the ordering of commands in an input script is not important. However the following rules apply:

(1) SPPARKS does not read your entire input script and then perform a simulation with all the settings. Rather,
the input script is read one line at a time and each command takes effect when it is read. Thus this sequence of
commands:

count ligand 10000
run 100
run 100

does something different than this sequence:

run 100
count ligand 10000
run 100

In the first case, the count of ligand molecules is set to 10000 before the first simulation and whatever the count
becomes will be used as input for the second simulation. In the 2nd case, the default count of 0 is used for the 1st
simulation and then the count is set to 10000 molecules before the second simulation.

(2) Some commands are only valid when they follow other commands. For example you cannot set the count of a
molecular species until the add_species command has been used to define that species.

(3) Sometimes command B will use values that can be set by command A. This means command A must precede
command B in the input script if it is to have the desired effect.

(4) Some commands are only used by a specific application(s).

Many input script errors are detected by SPPARKS and an ERROR or WARNING message is printed. This
section gives more information on what errors mean. The documentation for each command lists restrictions on
how the command can be used.

17

https://spparks.github.io

3.2 Parsing rules

Each non-blank line in the input script is treated as a command. SPPARKS commands are case sensitive.
Command names are lower-case, as are specified command arguments. Upper case letters may be used in file
names or user-chosen ID strings.

Here is how each line in the input script is parsed by SPPARKS:

(1) If the line ends with a "&" character (with no trailing whitespace), the command is assumed to continue on the
next line. The next line is concatenated to the previous line by removing the "&" character and newline. This
allows long commands to be continued across two or more lines.

(2) All characters from the first "#" character onward are treated as comment and discarded.

(3) The line is searched repeatedly for $ characters which indicate variables that are replaced with a text string. If
the $ is followed by curly brackets, then the variable name is the text inside the curly brackets. If no curly
brackets follow the $, then the variable name is the character immediately following the $. Thus ${myTemp} and
$x refer to variable names "myTemp" and "x". See the variable command for details of how strings are assigned
to variables and how they are substituted for in input scripts.

(4) The line is broken into "words" separated by whitespace (tabs, spaces). Note that words can thus contain
letters, digits, underscores, or punctuation characters.

(5) The first word is the command name. All successive words in the line are arguments.

(6) Text with spaces can be enclosed in double quotes so it will be treated as a single argument. See the dump
modify or fix print commands for examples. A '#' or '$' character that in text between double quotes will not be
treated as a comment or substituted for as a variable.

3.3 Input script structure

This section describes the structure of a typical SPPARKS input script. The "examples" directory in the
SPPARKS distribution contains sample input scripts; the corresponding problems are discussed in this section,
and some are animated on the SPPARKS website.

A SPPARKS input script typically has 3 parts:

choice of application, solver, sweeper•
settings•
run a simulation•

The last 2 parts can be repeated as many times as desired. I.e. run a simulation, change some settings, run some
more, etc. Each of the 3 parts is now described in more detail. Remember that almost all the commands need only
be used if a non-default value is desired.

(1) Choice of application, solver, sweep method

Use the app_style, solve_style, and sweep commands to setup the kind of simulation you wish to run. Note that
sweeping is only relevant to applications that define a geometric lattice of event sites and only if you wish to
perform rejection kinetic Monte Carlo updates.

(2) Settings

18

https://spparks.github.io

Parameters for a simulation can be defined by application-specific commands or by generic commands that are
common to many kinds of applications. See the doc pages for individual applications for information on the
former. Examples of the latter are the stats and temperature commands.

The diag_style command can also be used to setup various diagnostic computations to perform during a
simulation.

(3) Run a simulation

A kinetic or Metropolis Monte Carlo simulation is performed using the run command.

3.4 Commands listed by category

This section lists all SPPARKS commands, grouped by category. The next section lists the same commands
alphabetically. Note that some commands are only usable with certain applications. Also, some style options for
some commands are part of specific SPPARKS packages, which means they cannot be used unless the package
was included when SPPARKS was built. Not all packages are included in a default SPPARKS build. These
dependencies are listed as Restrictions in the command's documentation.

Initialization commands:

app_style, create_box, create_sites, processors, read_sites, region, solve_style

Setting commands:

dimension, boundary, lattice, pair_coeff, pair_style, reset_time, sector, seed, sweep, set

Application-specific commands:

add_reaction, add_species, barrier, count, deposition, ecoord, inclusion, pin, temperature, volume

Output commands:

diag_style, dump, dump image, dump_modify, dump_one, stats, undump

Actions:

run,

Miscellaneous:

clear, echo, if, include, jump, label, log, next, print, shell, variable

3.5 Individual commands

This section lists all SPPARKS commands alphabetically, with a separate listing below of styles within certain
commands. The previous section lists the same commands, grouped by category. Note that commands which are
only usable with certain applications are listed in the next section.

app_style boundary clear create_box create_sites diag_style
dimension dump dump image dump_modify dump_one echo

19

if include jump label lattice log
next pair_coeff pair_style print processors read_sites

region reset_time run sector seed set
shell solve_style stats sweep undump variable

Application-specific commands. These are commands defined only for use by one or more applications. See the
command doc page for details. See the various app_style commands in the next section for a listing of all the
commands defined for individual applications.

add_reaction add_species am_build am cartesian_layer am pass am path
am path_layer am pathgen barrier count deep_length deep_width

deposition diffusion/multiphase ecoord elliopsoid_depth event inclusion
pin pulse temperature volume weld_shape_ellipse weld_shape_teardrop

Application styles. See the app_style command for one-line descriptions of each style or click on the style itself
for a full description:

am/ellipsoid chemistry diffusion diffusion/multiphase erbium ising ising/single membrane
phasefield/potts potts potts/am/bezier potts/am/path/gen potts/am/weld potts/grad potts/neigh potts/neighonly

potts/pin potts/quaternion potts/strain potts/strain/pin potts/weld potts/weld/jom relax sinter
sos test/group

Solve styles. See the solve_style command for one-line descriptions of each style or click on the style itself for a
full description:

group linear tree

Pair styles. See the pair_style command for one-line descriptions of each style or click on the style itself for a full
description:

lj/cut

Diagnostic styles. See the diag_style command for one-line descriptions of each style or click on the style itself
for a full description:

array cluster diffusion energy erbium propensity
sinter_avg_neck_area sinter_density sinter_free_energy_pore sinter_pore_curvature

20

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

4. How-to discussions

The following sections describe how to perform various operations in SPPARKS.

4.1 Running multiple simulations from one input script
4.2 Coupling SPPARKS to other codes
4.3 Library interface to SPPARKS

The example input scripts included in the SPPARKS distribution and highlighted in this section also show how to
setup and run various kinds of problems.

4.1 Running multiple simulations from one input script

This can be done in several ways. See the documentation for individual commands for more details on how these
examples work.

If "multiple simulations" means continue a previous simulation for more timesteps, then you simply use the run
command multiple times. For example, this script

app_style ising/2d/4n 100 100 12345
...
run 1.0
run 1.0
run 1.0
run 1.0
run 1.0

would run 5 successive simulations of the same system for a total of 5.0 seconds of elapsed time.

If you wish to run totally different simulations, one after the other, the clear command can be used in between
them to re-initialize SPPARKS. For example, this script

app_style ising/2d/4n 100 100 12345
...
run 1.0
clear
app_style ising/2d/4n 200 200 12345
...
run 1.0

would run 2 independent simulations, one after the other.

For large numbers of independent simulations, you can use variables and the next and jump commands to loop
over the same input script multiple times with different settings. For example, this script, named in.runs

variable d index run1 run2 run3 run4 run5 run6 run7 run8
shell cd $d
app_style ising/2d/4n 100 100 12345
include temperature.txt
run 1.0
shell cd ..
clear
next d

21

https://spparks.github.io

jump in.runs

would run 8 simulations in different directories, using a temperature.txt file in each directory with an input
command to set the temperature. The same concept could be used to run the same system at 8 different sizes,
using a size variable and storing the output in different log files, for example

variable a loop 8
variable size index 100 200 400 800 1600 3200 6400 10000
log log.${size}
app_style ising/2d/4n ${size} ${size} 12345
run 1.0
next size
next a
jump in.runs

All of the above examples work whether you are running on 1 or multiple processors, but assumed you are
running SPPARKS on a single partition of processors. SPPARKS can be run on multiple partitions via the
"-partition" command-line switch as described in this section of the manual.

In the last 2 examples, if SPPARKS were run on 3 partitions, the same scripts could be used if the "index" and
"loop" variables were replaced with universe-style variables, as described in the variable command. Also, the
"next size" and "next a" commands would need to be replaced with a single "next a size" command. With these
modifications, the 8 simulations of each script would run on the 3 partitions one after the other until all were
finished. Initially, 3 simulations would be started simultaneously, one on each partition. When one finished, that
partition would then start the 4th simulation, and so forth, until all 8 were completed.

4.2 Coupling SPPARKS to other codes

SPPARKS is designed to allow it to be coupled to other codes. For example, an atomistic code might relax atom
positions and pass those positions to SPPARKS. Or a continuum finite element (FE) simulation might use a
Monte Carlo relaxation to formulate a boundary condition on FE nodal points, compute a FE solution, and return
the results to the MC calculation.

SPPARKS can be coupled to other codes in at least 3 ways. Each has advantages and disadvantages, which you'll
have to think about in the context of your application.

(1) Define a new diag_style command that calls the other code. In this scenario, SPPARKS is the driver code.
During its timestepping, the diagnostic is invoked, and can make library calls to the other code, which has been
linked to SPPARKS as a library. See this section of the documentation for info on how to add a new diagnostic to
SPPARKS.

(2) Define a new SPPARKS command that calls the other code. This is conceptually similar to method (1), but in
this case SPPARKS and the other code are on a more equal footing. Note that now the other code is not called
during the even loop of a SPPARKS run, but between runs. The SPPARKS input script can be used to alternate
SPPARKS runs with calls to the other code, invoked via the new command.

In this scenario, the other code can be called as a library, as in (1), or it could be a stand-alone code, invoked by a
system() call made by the command (assuming your parallel machine allows one or more processors to start up
another program). In the latter case the stand-alone code could communicate with SPPARKS thru files that the
command writes and reads.

See this section of the documentation for how to add a new command to SPPARKS.

22

(3) Use SPPARKS as a library called by another code. In this case the other code is the driver and calls
SPPARKS as needed. Or a wrapper code could link and call both SPPARKS and another code as libraries.

Examples of driver codes that call SPPARKS as a library are included in the examples/COUPLE directory of the
SPPARKS distribution; see examples/COUPLE/README for more details:

simple: simple driver programs in C++ and C which invoke SPPARKS as a library (NOTE: not yet
available)

•

lammps_spparks: coupling of SPPARKS and LAMMPS, to couple a kinetic Monte Carlo model for grain
growth using MD to calculate strain induced across grain boundaries

•

This section of the documentation describes how to build SPPARKS as a library. Once this is done, you can
interface with SPPARKS either via C++, C, Fortran, or Python (or any other language that supports a vanilla
C-like interface). For example, from C++ you could create one (or more) "instances" of SPPARKS, pass it an
input script to process, or execute individual commands, all by invoking the correct class methods in SPPARKS.
From C or Fortran you can make function calls to do the same things. See Section_python of the manual for a
description of the Python wrapper provided with SPPARKS that operates through the SPPARKS library interface.

The files src/library.cpp and library.h contain the C-style interface to SPPARKS. See Section_howto 3 of the
manual for a description of the interface and how to extend it for your needs.

Note that the spparks_open() function that creates an instance of SPPARKS takes an MPI communicator as an
argument. This means that instance of SPPARKS will run on the set of processors in the communicator. Thus the
calling code can run SPPARKS on all or a subset of processors. For example, a wrapper script might decide to
alternate between SPPARKS and another code, allowing them both to run on all the processors. Or it might
allocate half the processors to SPPARKS and half to the other code and run both codes simultaneously before
syncing them up periodically. Or it might instantiate multiple instances of SPPARKS to perform different
calculations.

4.3 Library interface to SPPARKS

As described in Section_start 4, SPPARKS can be built as a library, so that it can be called by another code, used
in a coupled manner with other codes, or driven through a Python interface.

All of these methodologies use a C-style interface to SPPARKS that is provided in the files src/library.cpp and
src/library.h. The functions therein have a C-style argument list, but contain C++ code you could write yourself in
a C++ application that was invoking SPPARKS directly. The C++ code in the functions illustrates how to invoke
internal SPPARKS operations. Note that SPPARKS classes are defined within a SPPARKS namespace
(SPPARKS_NS) if you use them from another C++ application.

Library.cpp contains these 4 functions:

void spparks_open(int, char **, MPI_Comm, void **);
void spparks_close(void *);
void spparks_file(void *, char *);
char *spparks_command(void *, char *);

The spparks_open() function is used to initialize SPPARKS, passing in a list of strings as if they were
command-line arguments when SPPARKS is run in stand-alone mode from the command line, and a MPI
communicator for SPPARKS to run under. It returns a ptr to the SPPARKS object that is created, and which is
used in subsequent library calls. The spparks_open() function can be called multiple times, to create multiple
instances of SPPARKS.

23

https://www.lammps.org

SPPARKS will run on the set of processors in the communicator. This means the calling code can run SPPARKS
on all or a subset of processors. For example, a wrapper script might decide to alternate between SPPARKS and
another code, allowing them both to run on all the processors. Or it might allocate half the processors to
SPPARKS and half to the other code and run both codes simultaneously before syncing them up periodically. Or
it might instantiate multiple instances of SPPARKS to perform different calculations.

The spparks_close() function is used to shut down an instance of SPPARKS and free all its memory.

The spparks_file() and spparks_command() functions are used to pass a file or string to SPPARKS as if it were an
input script or single command in an input script. Thus the calling code can read or generate a series of SPPARKS
commands one line at a time and pass it thru the library interface to setup a problem and then run it, interleaving
the spparks_command() calls with other calls to extract information from SPPARKS, perform its own operations,
or call another code's library.

Other useful functions are also included in library.cpp. For example:

void *spparks_extract(void *, char *)
double *spparks_energy()

These can extract various global or per-site quantities from SPPARKS so that a driver application can access the
values or even reset them. See the library.cpp file and its associated header file library.h for details.

The key idea of the library interface is that you can write any functions you wish to define how your code talks to
SPPARKS and add them to src/library.cpp and src/library.h, as well as to the Python interface. The routines you
add can access or change any SPPARKS data you wish. The examples/COUPLE and python directories have
example C++ and C and Python codes which show how a driver code can link to SPPARKS as a library, run
SPPARKS on a subset of processors, grab data from SPPARKS, change it, and put it back into SPPARKS.

24

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

5. Example problems

The SPPARKS distribution includes an examples sub-directory with several sample problems. Each problem is in
a sub-directory of its own. Most are small models that can be run quickly, requiring at most a couple of minutes to
run on a desktop machine. Each problem has an input script (in.*) and produces a log file (log.*) and dump file
(dump.*) when it runs. A few sample log file outputs on different machines and different numbers of processors
are included in the directories to compare your answers to. E.g. a log file like log.potts.foo.P means it ran on P
processors of machine "foo".

In some cases, the dump files produced by the example runs can be animated using the various visuzlization tools,
such as the Pizza.py toolkit referenced in the Additional Tools section of the SPPARKS documentation.
Animations of some of these examples can be viewed on the Movies section of the SPPARKS WWW Site.

These are the sample problems in the examples sub-directories:

groups test of group-based KMC solver
ising standard Ising model
membrane membrane model of pore formation around protein inclusions
potts multi-state Potts model for grain growth

Here is how you might run and visualize one of the sample problems:

cd examples/potts
cp ../../src/spk_linux . # copy SPPARKS executable to this dir
spk_linux <in.potts # run the problem

Running the simulation produces the files dump.potts and log.spparks.

If you add dump image line(s) to the input script a series of JPG images will be produced by the run. These can be
viewed individually or turned into a movie or animated by tools like ImageMagick or QuickTime or various
Windows-based tools. See the dump image doc page for more details. E.g. this Imagemagick command would
create a GIF file suitable for viewing in a browser.

% convert -loop 1 *.jpg foo.gif

There is also a COUPLE directory with examples of how to use SPPARKS as a library, either by itself or in
tandem with another code or library. See the COUPLE/README file to get started.

25

https://spparks.github.io
https://spparks.github.io

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

6. Performance & scalability

Eventually this section will highlight SPPARKS performance in serial and parallel on interesting Monte Carlo
benchmarks.

26

https://spparks.github.io

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

7. Additional tools

SPPARKS is designed to be a Monte Carlo (MC) kernel for performing kinetic MC or Metropolis MC
computations. Additional pre- and post-processing steps are often necessary to setup and analyze a simulation.
This section describes additional tools that may be useful.

Users can extend SPPARKS by writing diagnostic classes that perform desired analysis or computations. See this
section for more info.

Our group has written and released a separate toolkit called Pizza.py which provides tools which may be useful
for setup, analysis, plotting, and visualization of SPPARKS simulations. Pizza.py is written in Python and is
available for download from the Pizza.py WWW site.

Addtional scripts below are distributed with spparks under the tools directory.

potts_quaternion/cpp_quaternion.py: enables reading spparks quaternion header files•
potts_quaternion/plot_cubic_symmetry_histograms.py: verification plots for disorientation distribution of
randomly oriented cubic structures

•

potts_quaternion/plot_hcp_symmetry_histograms.py: verification plots for disorientation distribution of
randomly oriented hcp structures

•

27

https://spparks.github.io
https://lammps.github.io/pizza
http://www.python.org
https://lammps.github.io/pizza

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

8. Modifying & extending SPPARKS

SPPARKS is designed in a modular fashion so as to be easy to modify and extend with new functionality.

In this section, changes and additions users can make are listed along with minimal instructions. If you add a new
feature to SPPARKS and think it will be of interest to general users, we encourage you to submit it to the
developers for inclusion in the released version of SPPARKS.

The best way to add a new feature is to find a similar feature in SPPARKS and look at the corresponding source
and header files to figure out what it does. You will need some knowledge of C++ to be able to understand the
hi-level structure of SPPARKS and its class organization, but functions (class methods) that do actual
computations are written in vanilla C-style code and operate on simple C-style data structures (vectors and
arrays).

Most of the new features described in this section require you to write a new C++ derived class. Creating a new
class requires 2 files, a source code file (*.cpp) and a header file (*.h). The derived class must provide certain
methods to work as a new option. Depending on how different your new feature is compared to existing features,
you can either derive from the base class itself, or from a derived class that already exists. Enabling SPPARKS to
invoke the new class is as simple as adding two lines to the style_user.h file, in the same syntax as other
SPPARKS classes are specified in the style.h file.

The advantage of C++ and its object-orientation is that all the code and variables needed to define the new feature
are in the 2 files you write, and thus shouldn't make the rest of SPPARKS more complex or cause side-effect
bugs.

Here is a concrete example. Suppose you write 2 files app_foo.cpp and app_foo.h that define a new class AppFoo
that implements a Monte Carlo model described in the classic 1997 paper by Foo, et al. If you wish to invoke that
application in a SPPARKS input script with a command like

app_style foo 0.1 3.5

you put your 2 files in the SPPARKS src directory and re-make the code. The app_foo.h file should have these
lines at the top

#ifdef APP_CLASS
AppStyle(foo,AppFoo)
#else

where "foo" is the style keyword to be used in the app_style command, and AppFoo is the class name in your
C++ files.

When you re-make SPPARKS, your new application becomes part of the executable and can be invoked with a
app_style command like the example above. Arguments like 0.1 and 3.5 can be defined and processed by your
new class.

Here is a list of the new features that can be added in this way.

Application styles•
Diagnostic styles•
Input script commands•
Solve styles•

28

https://spparks.github.io

As illustrated by the application example, these options are referred to in the SPPARKS documentation as the
"style" of a particular command.

The instructions below give the header file for the base class that these styles are derived from. Public variables in
that file are ones used and set by the derived classes which are also used by the base class. Sometimes they are
also used by the rest of SPPARKS. Virtual functions in the base class header file which are set = 0 are ones you
must define in your new derived class to give it the functionality SPPARKS expects. Virtual functions that are not
set to 0 are functions you can optionally define.

Application styles

In SPPARKS, applications are what define the simulation model that is evolved via Monte Carlo algorithms. A
new model typically requires adding a new application to the code. Read the doc page for the app_style command
to understand the distinction between on-lattice and off-lattice applications. A new off-lattice application can be
anything you wish. On-lattice applications are derive from the AppLattice class.

For on-lattice and off-lattice applications, here is a brief description of methods you define in your new derived
class. Some of them are required; some are optional. See app.h for details.

input_app additional commands the application defines
grow_app set pointers to per-site arrays used by the application
init_app initialize the application before a run
site_energy compute energy of a site
site_event_rejection peform an event with null-bin rejection (for rKMC)
site_propensity compute propensity of all events on a site (for KMC)
site_event perform an event (for KMC)

Note that two of the methods are required if you want your application to perform kinetic Monte Carlo (KMC)
with a solver. One of the methods is required if you want your application to perform rejection KMC (rKMC)
with a sweep method.

The constructor for your application class also needs to define, to insure proper operation with the "KMC
solvers'_solve.html and rejection KMC sweep methods. These are the flags, all of which have default values set in
app_lattice.cpp:

ninteger how many integer values are defined per site
ndouble how many floating point values are defined per site
delpropensity how many neighbors away values are needed to compute propensity
delevent how many neighbors away may the value can be changed by an event
allow_kmc 1 if methods are provided for KMC
allow_rejection 1 if methods are provided for rejection KMC
allow_masking 1 if rKMC method supports masking
numrandom # of random numbers used by the site_event_rejection method

Diagnostic styles

Diagnostic classes compute some form of analysis periodically during a simulation. See the diag_style command
for details.

29

To add a new diagnostic, here is a brief description of methods you define in your new derived class. Some of
them are required; some are optional. See diag.h for details.

init setup the computation
compute perform the analysis computation
stats_header what to add to statistics header for this diagnostic
stats fields added to statistics by this diagnostic

Input script commands

New commands can be added to SPPARKS input scripts by adding new classes that have a "command" method
and are listed in the Command sections of style_user.h (or style.h). For example, the shell commands (cd, mkdir,
rm, etc) are implemented in this fashion. When such a command is encountered in the SPPARKS input script,
SPPARKS simply creates a class with the corresponding name, invokes the "command" method of the class, and
passes it the arguments from the input script. The command method can perform whatever operations it wishes on
SPPARKS data structures.

The single method your new class must define is as follows:

command operations performed by the new command
Of course, the new class can define other methods and variables as needed.

Solve styles

In SPPARKS, a solver performs the kinetic Monte Carlo (KMC) operation of selecting an event from a list of
events and associated probabilities. See the solve_style command for details.

To add a new KMC solver, here is a brief description of methods you define in your new derived class. Some of
them are required; some are optional. See diag.h for details.

Here is a brief description of methods you define in your new derived class. All of them are required. See solve.h
for details.

clone make a copy of the solver for use within a sector of the domain
init initialize the solver
update update one or more event probabilities
resize change the number of events in the list
event select an event and associated timestep

(Foo) Foo, Morefoo, and Maxfoo, J of Classic Monte Carlo Applications, 75, 345 (1997).

30

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

9. Errors

This section describes the various kinds of errors you can encounter when using SPPARKS.

10.1 Common problems
10.2 Reporting bugs
10.3 Error & warning messages

9.1 Common problems

A SPPARKS simulation typically has two stages, setup and run. Many SPPARKS errors are detected at setup
time; others may not occur until the middle of a run.

SPPARKS tries to flag errors and print informative error messages so you can fix the problem. Of course
SPPARKS cannot figure out your physics mistakes, like choosing too big a timestep or setting up an invalid
lattice. If you find errors that SPPARKS doesn't catch that you think it should flag, please send an email to the
developers.

If you get an error message about an invalid command in your input script, you can determine what command is
causing the problem by looking in the log.spparks file or using the echo command to see it on the screen. For
example you can run your script as

spk_linux -echo screen <in.script

For a given command, SPPARKS expects certain arguments in a specified order. If you mess this up, SPPARKS
will often flag the error, but it may read a bogus argument and assign a value that is not what you wanted. E.g. if
the input parser reads the string "abc" when expecting an integer value, it will assign the value of 0 to a variable.

Generally, SPPARKS will print a message to the screen and exit gracefully when it encounters a fatal error.
Sometimes it will print a WARNING and continue on; you can decide if the WARNING is important or not. If
SPPARKS crashes or hangs without spitting out an error message first then it could be a bug (see this section) or
one of the following cases:

SPPARKS runs in the available memory each processor can allocate. All large memory allocations in the code are
done via C-style malloc's which will generate an error message if you run out of memory. Smaller chunks of
memory are allocated via C++ "new" statements. If you are unlucky you could run out of memory when one of
these small requests is made, in which case the code will crash, since SPPARKS doesn't trap on those errors.

Illegal arithmetic can cause SPPARKS to run slow or crash. This is typically due to invalid physics and numerics
that your simulation is computing. If you see wild energy values or NaN values in your SPPARKS output,
something is wrong with your simulation.

In parallel, one way SPPARKS can hang is due to how different MPI implementations handle buffering of
messages. If the code hangs without an error message, it may be that you need to specify an MPI setting or two
(usually via an environment variable) to enable buffering or boost the sizes of messages that can be buffered.

31

https://spparks.github.io

9.2 Reporting bugs

If you are confident that you have found a bug in SPPARKS, please send an email to the developers.

First, check the "New features and bug fixes" section of the SPPARKS WWW site to see if the bug has already
been reported or fixed.

If not, the most useful thing you can do for us is to isolate the problem. Run it on the smallest problem and fewest
number of processors and with the simplest input script that reproduces the bug.

In your email, describe the problem and any ideas you have as to what is causing it or where in the code the
problem might be. We'll request your input script and data files if necessary.

9.3 Error & warning messages

These are two alphabetic lists of the ERROR and WARNING messages SPPARKS prints out and the reason why.
If the explanation here is not sufficient, the documentation for the offending command may help. Grepping the
source files for the text of the error message and staring at the source code and comments is also not a bad idea!
Note that sometimes the same message can be printed from multiple places in the code.

Errors:

Adding site to bin it is not in
Internal SPPARKS error.

Adding site to illegal bin
Internal SPPARKS error.

All pair coeffs are not set
Self-explanatory.

All universe/uloop variables must have same # of values
Self-explanatory.

All variables in next command must be same style
Self-explanatory.

Another input script is already being processed
Cannot attempt to open a 2nd input script, when the original file is still being processed.

App cannot use both a KMC and rejection KMC solver
You cannot define both a solver and sweep option.

App did not set dt_sweep
Internal SPPARKS error.

App does not permit user_update yes
UNDOCUMENTED

App needs a KMC or rejection KMC solver
You must define either a solver or sweep option.

App relax requires a pair potential
Self-explanatory.

App style proc count is not valid for 1d simulation
There can only be 1 proc in y and z dimensions for 1d models.

App style proc count is not valid for 2d simulation
There can only be 1 proc in the z dimension for 2d models.

App_style command after simulation box is defined
Self-explanatory.

App_style specific command before app_style set
Self-explanatory.

32

https://spparks.github.io

Application cutoff is too big for processor sub-domain
There must be at least 2 bins per processor in each dimension where sectoring occurs.

Arccos of invalid value in variable formula
Argument of arccos() must be between -1 and 1.

Arcsin of invalid value in variable formula
Argument of arcsin() must be between -1 and 1.

BAD DONE
UNDOCUMENTED

BAD STENCIL
UNDOCUMENTED

BIN MISMATCH
UNDOCUMENTED

Bad neighbor site ID
UNDOCUMENTED

Bigint setting in spktype.h is invalid
UNDOCUMENTED

Boundary command after simulation box is defined
UNDOCUMENTED

Boundary command currently only supported by on-lattice apps
UNDOCUMENTED

Box bounds are invalid
Lo bound >= hi bound.

COUNT MISMATCH
UNDOCUMENTED

Can only read Neighbors for on-lattice applications
UNDOCUMENTED

Can only use ecoord command with app_style diffusion nonlinear
Self-explanatory.

Cannot color this combination of lattice and app
Coloring is not supported on this lattice for the neighbor dependencies of this application.

Cannot color without a lattice definition of sites
UNDOCUMENTED

Cannot color without contiguous site IDs
UNDOCUMENTED

Cannot create box after simulation box is defined
Self-explanatory.

Cannot create box with this application style
This application does not support spatial domains.

Cannot create sites after sites already exist
Self-explanatory.

Cannot create sites with undefined lattice
Must use lattice commands first to define a lattice.

Cannot create/grow a vector/array of pointers for %s
UNDOCUMENTED

Cannot define Schwoebel barrier without Schwoebel model
Self-explanatory.

Cannot dump JPG file
UNDOCUMENTED

Cannot open diag style cluster dump file
Self-explanatory.

Cannot open diag_style cluster dump file
Self-explanatory.

33

Cannot open diag_style cluster output file
Self-explanatory.

Cannot open dump file
Self-explanatory.

Cannot open file %s
Self-explanatory.

Cannot open gzipped file
Self-explantory.

Cannot open input script %s
Self-explanatory.

Cannot open log.spparks
Self-explanatory.

Cannot open logfile
Self-explanatory.

Cannot open logfile %s
Self-explanatory.

Cannot open screen file
The screen file specified as a command-line argument cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot open universe log file
For a multi-partition run, the master log file cannot be opened. Check that the directory you are running in
allows for files to be created.

Cannot open universe screen file
For a multi-partition run, the master screen file cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot perform deposition in parallel
UNDOCUMENTED

Cannot perform deposition with multiple sectors
UNDOCUMENTED

Cannot read Neighbors after sites already exist
UNDOCUMENTED

Cannot read Neighbors unless max neighbors is set
UNDOCUMENTED

Cannot read Sites after sites already exist
UNDOCUMENTED

Cannot read Values before sites exist or are read
UNDOCUMENTED

Cannot redefine variable as a different style
An equal-style variable can be re-defined but only if it was originally an equal-style variable.

Cannot run 1d simulation with nonperiodic Y or Z dimension
UNDOCUMENTED

Cannot run 2d simulation with nonperiodic Z dimension
UNDOCUMENTED

Cannot run application until simulation box is defined
Self-explanatory.

Cannot use %s command until sites exist
This command requires sites exist before using it in an input script.

Cannot use KMC solver in parallel with no sectors
Self-explanatory.

Cannot use color/strict rejection KMC with sectors
Self-explanatory.

Cannot use coloring without domain nx,ny,nz defined

34

UNDOCUMENTED
Cannot use create_sites basis with random lattice

Self-explanatory.
Cannot use diag_style cluster without a lattice defined

This diagnostic uses the lattice style to dump OpenDx files.
Cannot use dump_one for first snapshot in dump file

Self-explanatory.
Cannot use random rejection KMC in parallel with no sectors

Self-explanatory.
Cannot use raster rejection KMC in parallel with no sectors

Self-explanatory.
Cannot use region INF or EDGE when box does not exist

Can only define a region with these parameters after a simulation box has been defined.
Choice of sector stop led to no rKMC events

Self-explanatory.
Color stencil is incommensurate with lattice size

Since coloring induces a pattern of colors, this pattern must fit an integer number of times into a periodic
lattice.

Could not find dump ID in dump_modify command
Self-explanatory.

Could not find dump ID in dump_one command
Self-explanatory.

Could not find dump ID in undump command
Self-explanatory.

Create_box command before app_style set
Self-explanatory.

Create_box region ID does not exist
Self-explanatory.

Create_box region must be of type inside
Self-explanatory.

Create_sites command before app_style set
Self-explanatory.

Create_sites command before simulation box is defined
Self-explanatory.

Create_sites region ID does not exist
Self-explanatory.

Creating a quantity application does not support
The application defines what variables it supports. You cannot set a variable with the create_sites
command for a variable that isn't supported.

Data file dimension does not match existing box
UNDOCUMENTED

Data file maxneigh setting does not match existing sites
UNDOCUMENTED

Data file number of sites does not match existing sites
UNDOCUMENTED

Data file simluation box different that current box
UNDOCUMENTED

Diag cluster does not work if ncluster > 2^31
UNDOCUMENTED

Diag cluster dvalue in neighboring clusters do not match
Internal SPPARKS error.

Diag cluster ivalue in neighboring clusters do not match

35

Internal SPPARKS error.
Diag propensity requires KMC solve be performed

Only KMC solvers compute a propensity for sites and the system.
Diag style cluster dump file name too long

Self-explanatory.
Diag style incompatible with app style

The lattice styles of the diagnostic and the on-lattice application must match.
Diag_style cluster incompatible with lattice style

UNDOCUMENTED
Diag_style cluster nx,ny,nz = 0

UNDOCUMENTED
Diag_style command before app_style set

Self-explanatory.
Diag_style diffusion requires app_style diffusion

Self-explanatory.
Diag_style erbium requires app_style erbium

UNDOCUMENTED
Did not assign all sites correctly

One or more sites in the read_sites file were not assigned to a processor correctly.
Did not create correct number of sites

One or more created sites were not assigned to a processor correctly.
Did not reach event propensity threshhold

UNDOCUMENTED
Dimension command after lattice is defined

Self-explanatory.
Dimension command after simulation box is defined

Self-explanatory.
Divide by 0 in variable formula

Self-explanatory.
Dump command before app_style set

Self-explanatory.
Dump command can only be used for spatial applications

Self-explanatory.
Dump image boundary requires lattice app

UNDOCUMENTED
Dump image crange must be set

UNDOCUMENTED
Dump image drange must be set

UNDOCUMENTED
Dump image persp option is not yet supported

UNDOCUMENTED
Dump image requires one snapshot per file

UNDOCUMENTED
Dump image with quantity application does not support

UNDOCUMENTED
Dump requires propensity but no KMC solve performed

Only KMC solvers compute propensity for sites.
Dump_modify command before app_style set

Self-explanatory.
Dump_modify region ID does not exist

UNDOCUMENTED
Dump_modify scolor requires integer attribute for dump image color

36

UNDOCUMENTED
Dump_modify sdiam requires integer attribute for dump image diameter

UNDOCUMENTED
Dump_one command before app_style set

Self-explanatory.
Dumping a quantity application does not support

The application defines what variables it supports. You cannot output a variable in a dump that isn't
supported.

Failed to allocate %ld bytes for array %s
Your SPPARKS simulation has run out of memory. You need to run a smaller simulation or on more
processors.

Failed to reallocate %ld bytes for array %s
Your SPPARKS simulation has run out of memory. You need to run a smaller simulation or on more
processors.

GHOST IN OWNED BIN
UNDOCUMENTED

Ghost connection was not found
Internal SPPARKS error. Should not occur.

Ghost site was not found
Internal SPPARKS error. Should not occur.

Illegal ... command
Self-explanatory. Check the input script syntax and compare to the documentation for the command. You
can use -echo screen as a command-line option when running SPPARKS to see the offending line.

Incorrect args for pair coefficients
Self-explanatory.

Incorrect lattice neighbor count
Internal SPPARKS error.

Incorrect site format in data file
Self-explanatory.

Incorrect value format in data file
Self-explanatory.

Input line too long after variable substitution
This is a hard (very large) limit defined in the input.cpp file.

Input line too long: %s
This is a hard (very large) limit defined in the input.cpp file.

Invalid attribute in dump text command
UNDOCUMENTED

Invalid color in dump_modify command
UNDOCUMENTED

Invalid command-line argument
One or more command-line arguments is invalid. Check the syntax of the command you are using to
launch SPPARKS.

Invalid diag_style command
UNDOCUMENTED

Invalid dump image filename
UNDOCUMENTED

Invalid dump image persp value
UNDOCUMENTED

Invalid dump image theta value
UNDOCUMENTED

Invalid dump image zoom value
UNDOCUMENTED

37

Invalid dump style
UNDOCUMENTED

Invalid dump_modify threshold operator
Self-explanatory.

Invalid event count for app_style test/group
Number of events must be > 0.

Invalid image color range
UNDOCUMENTED

Invalid image up vector
UNDOCUMENTED

Invalid keyword in dump command
Self-explanatory.

Invalid keyword in variable formula
UNDOCUMENTED

Invalid math function in variable formula
The math function is not recognized.

Invalid number of sectors
Self-explanatory.

Invalid pair style
Self-explanatory.

Invalid probability bounds for app_style test/group
Self-explanatory.

Invalid probability bounds for solve_style group
Self-explanatory.

Invalid probability delta for app_style test/group
Self-explanatory.

Invalid region style
Self-explanatory.

Invalid site ID in Sites section of data file
Self-explanatory.

Invalid syntax in variable formula
Self-explanatory.

Invalid value setting in diag_style erbium
UNDOCUMENTED

Invalid variable evaluation in variable formula
A variable used in a formula could not be evaluated.

Invalid variable in next command
Self-explanatory.

Invalid variable name
Variable name used in an input script line is invalid.

Invalid variable name in variable formula
Variable name is not recognized.

Invalid variable style with next command
Variable styles equal and world cannot be used in a next command.

Invalid volume setting
Volume must be set to value > 0.

KMC events are not implemented in app
Not every application supports KMC solvers.

LINK MISMATCH
UNDOCUMENTED

Label wasn't found in input script
Self-explanatory.

38

Lattice command before app_style set
Self-explanatory.

Lattice style does not match dimension
Self-explanatory.

Log of zero/negative in variable formula
Self-explanatory.

MPI_SPK_BIGINT and bigint in spktype.h are not compatible
UNDOCUMENTED

MPI_SPK_TAGINT and tagint in spktype.h are not compatible
UNDOCUMENTED

Mask logic not implemented in app
Not every application supports masking.

Mismatch in counting for dbufclust
Self-explanatory.

Must read Sites before Neighbors
Self-explanatory.

Must use -in switch with multiple partitions
A multi-partition simulation cannot read the input script from stdin. The -in command-line option must be
used to specify a file.

Must use value option before basis option in create_sites command
Self-explanatory.

No Neighbors defined in site file
UNDOCUMENTED

No Sites defined in site file
UNDOCUMENTED

No reactions defined for chemistry app
Use the add_reaction command to specify one or more reactions.

No solver class defined
Self-explanatory.

Off-lattice application data file cannot have maxneigh setting
UNDOCUMENTED

One or more Hamiltonian params are unset
UNDOCUMENTED

One or more sites have invalid values
The application only allows sites to be initialized with specific values.

PBC remap of site failed
Internal SPPARKS error.

Pair_coeff command before app_style set
Self-explanatory.

Pair_coeff command before pair_style is defined
Self-explanatory.

Pair_style command before app_style set
Self-explanatory.

Per-processor solve tree is too big
UNDOCUMENTED

Per-processor system is too big
UNDOCUMENTED

Periodic box is not a multiple of lattice spacing
UNDOCUMENTED

Power by 0 in variable formula
Self-explanatory.

Processor partitions are inconsistent

39

The total number of processors in all partitions must match the number of processors LAMMPS is
running on.

Processors command after simulation box is defined
Self-explanatory.

Random lattice has no connectivity
The cutoff distance is likely too short.

Reaction ID %s already exists
Cannot re-define a reaction.

Reaction cannot have more than MAX_PRODUCT products
Self-explanatory.

Reaction has no numeric rate
Self-explanatory.

Reaction must have 0,1,2 reactants
Self-explanatory.

Read_sites command before app_style set
Self-explanatory.

Region ID for dump text does not exist
UNDOCUMENTED

Region command before app_style set
Self-explanatory.

Region intersect region ID does not exist
Self-explanatory.

Region union region ID does not exist
Self-explanatory.

Rejection events are not implemented in app
Self-explanatory.

Reset_time command before app_style set
Self-explanatory.

Reuse of dump ID
UNDOCUMENTED

Reuse of region ID
Self-explanatory.

Run command before app_style set
Self-explanatory.

Run upto value is before current time
Self-explanatory.

SITE MISMATCH
UNDOCUMENTED

SITES NOT IN BINS
UNDOCUMENTED

Seed command has not been used
The seed command must be used if another command requires random numbers.

Set command before sites exist
Self-explanatory.

Set command region ID does not exist
Self-explanatory.

Set if test on quantity application does not support
The application defines what variables it supports. You cannot do an if test with the set command on a
variable that isn't supported.

Setting a quantity application does not support
The application defines what variables it supports. You cannot set a variable with the set command on a
variable that isn't supported.

40

Site file has no Sites, Neighbors, or Values
UNDOCUMENTED

Site not in my bin domain
Internal SPPARKS error.

Site-site interaction was not found
Internal SPPARKS error.

Smallint setting in spktype.h is invalid
UNDOCUMENTED

Solve_style command before app_style set
Self-explanatory.

Species ID %s already exists
Self-explanatory.

Species ID %s does not exist
Self-explanatory.

Sqrt of negative in variable formula
Self-explanatory.

Stats command before app_style set
Self-explanatory.

Substitution for illegal variable
Self-explanatory.

System in site file is too big
UNDOCUMENTED

Tagint setting in spktype.h is invalid
UNDOCUMENTED

Temperature cannot be 0.0 for app erbium
UNDOCUMENTED

Threshold for a quantity application does not support
The application defines what variables it supports. You cannot do a threshold test with the dump
command on a variable that isn't supported.

Too many neighbors per site
Internal SPPARKS error.

Unbalanced quotes in input line
No matching end double quote was found following a leading double quote.

Undump command before app_style set
Self-explanatory.

Unexpected end of data file
Self-explanatory.

Universe/uloop variable count < # of partitions
A universe or uloop style variable must specify a number of values >= to the number of processor
partitions.

Unknown command: %s
The command is not known to SPPARKS. Check the input script.

Unknown identifier in data file: %s
Self-explanatory.

Unknown species in reaction command
Self-explanatory.

Unrecognized command
The command is assumed to be application specific, but is not known to SPPARKS. Check the input
script.

Use of region with undefined lattice
The lattice command must be used before defining a geometric region.

Variable for dump image center is invalid style

41

UNDOCUMENTED
Variable for dump image persp is invalid style

UNDOCUMENTED
Variable for dump image phi is invalid style

UNDOCUMENTED
Variable for dump image theta is invalid style

UNDOCUMENTED
Variable for dump image zoom is invalid style

UNDOCUMENTED
Variable name for dump image center does not exist

UNDOCUMENTED
Variable name for dump image persp does not exist

UNDOCUMENTED
Variable name for dump image phi does not exist

UNDOCUMENTED
Variable name for dump image theta does not exist

UNDOCUMENTED
Variable name for dump image zoom does not exist

UNDOCUMENTED
Variable name must be alphanumeric or underscore characters

Self-explanatory.
World variable count doesn't match # of partitions

A world-style variable must specify a number of values equal to the number of processor partitions.

Warnings:

%d propensities were reset to hi value, max hi = %g
UNDOCUMENTED

%d propensities were reset to lo value, max lo = %g
UNDOCUMENTED

Using dump image boundary with spheres
UNDOCUMENTED

42

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

43

https://spparks.github.io

SPPARKS Documentation

27 Nov 2024 version

Version info:

The SPPARKS "version" is the date when it was released, such as 12 Jun 2018. SPPARKS is updated
continuously. Whenever we fix a bug or add a feature, we release it immediately, and post a notice on this page of
the WWW site. Each dated copy of SPPARKS contains all the features and bug-fixes up to and including that
version date. The version date is printed to the screen and logfile every time you run SPPARKS. It is also in the
file src/version.h and in the SPPARKS directory name created when you unpack a tarball.

If you browse the HTML or PDF doc pages on the SPPARKS WWW site, they always describe the most
current version of SPPARKS.

•

If you browse the HTML or PDF doc pages included in your tarball, they describe the version you have.•

SPPARKS stands for Stochastic Parallel PARticle Kinetic Simulator.

SPPARKS is a kinetic Monte Carlo (KMC) code designed to run efficiently on parallel computers using both
KMC and Metropolis Monte Carlo algorithms. It was developed at Sandia National Laboratories, a US
Department of Energy facility, with funding from the DOE. It is an open-source code, distributed freely under the
terms of the GNU Public License (GPL), or sometimes by request under the terms of the GNU Lesser General
Public License (LGPL).

The SPPARKS website has more information about the code and publications that desribe it. The current
SPPARKS developers are John Mitchell (Sandia National Labs) and Steve Plimpton. They can be contacted at
jamitch@sandia.gov and sjplimp@gmail.com respectively. Past developers and other significant code
contributores are listed on the Authors page of the website.

The SPPARKS documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to the developers so we can
improve the SPPARKS documentation.

Once you are familiar with SPPARKS, you may want to bookmark this page at Section_commands.html#comm
since it gives quick access to documentation for all SPPARKS commands.

PDF file of the entire manual, generated by htmldoc

Introduction
1.1 What is SPPARKS
1.2 SPPARKS features
1.3 Open source distribution
1.4 Acknowledgments and citations

1.

Getting started
2.1 What's in the SPPARKS distribution
2.2 Making SPPARKS
2.3 Making SPPARKS with optional packages
2.4 Building SPPARKS as a library
2.5 Running SPPARKS
2.6 Command-line options
2.7 SPPARKS screen output

2.

Commands3.

44

https://spparks.github.io/bug.html
https://spparks.github.io/bug.html
https://spparks.github.io
https://sjplimp.github.io
https://spparks.github.io/authors.html
http://freecode.com/projects/htmldoc

3.1 SPPARKS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically
How-to discussions
4.1 Running multiple simulations from one input script
4.2 Coupling SPPARKS to other codes
4.3 Library interface to SPPARKS

4.

Example problems5.
Performance & scalability6.
Additional tools7.
Modifying & Extending SPPARKS8.
Python interface
9.1 Building SPPARKS as a shared library
9.2 Installing the Python wrapper into Python
9.3 Extending Python with MPI to run in parallel
9.4 Testing the Python-SPPARKS interface
9.5 Using SPPARKS from Python
9.6 Example Python scripts that use SPPARKS

9.

Errors
10.1 Common problems
10.2 Reporting bugs
10.3 Error & warning messages

10.

Future plans11.

45

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

3. Commands

This section describes how a SPPARKS input script is formatted and what commands are used to define a
simulation.

3.1 SPPARKS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically

3.1 SPPARKS input script

SPPARKS executes by reading commands from a input script (text file), one line at a time. When the input script
ends, SPPARKS exits. Each command causes SPPARKS to take some action. It may set an internal variable, read
in a file, or run a simulation. Most commands have default settings, which means you only need to use the
command if you wish to change the default.

In many cases, the ordering of commands in an input script is not important. However the following rules apply:

(1) SPPARKS does not read your entire input script and then perform a simulation with all the settings. Rather,
the input script is read one line at a time and each command takes effect when it is read. Thus this sequence of
commands:

count ligand 10000
run 100
run 100

does something different than this sequence:

run 100
count ligand 10000
run 100

In the first case, the count of ligand molecules is set to 10000 before the first simulation and whatever the count
becomes will be used as input for the second simulation. In the 2nd case, the default count of 0 is used for the 1st
simulation and then the count is set to 10000 molecules before the second simulation.

(2) Some commands are only valid when they follow other commands. For example you cannot set the count of a
molecular species until the add_species command has been used to define that species.

(3) Sometimes command B will use values that can be set by command A. This means command A must precede
command B in the input script if it is to have the desired effect.

(4) Some commands are only used by a specific application(s).

Many input script errors are detected by SPPARKS and an ERROR or WARNING message is printed. This
section gives more information on what errors mean. The documentation for each command lists restrictions on
how the command can be used.

46

https://spparks.github.io

3.2 Parsing rules

Each non-blank line in the input script is treated as a command. SPPARKS commands are case sensitive.
Command names are lower-case, as are specified command arguments. Upper case letters may be used in file
names or user-chosen ID strings.

Here is how each line in the input script is parsed by SPPARKS:

(1) If the line ends with a "&" character (with no trailing whitespace), the command is assumed to continue on the
next line. The next line is concatenated to the previous line by removing the "&" character and newline. This
allows long commands to be continued across two or more lines.

(2) All characters from the first "#" character onward are treated as comment and discarded.

(3) The line is searched repeatedly for $ characters which indicate variables that are replaced with a text string. If
the $ is followed by curly brackets, then the variable name is the text inside the curly brackets. If no curly
brackets follow the $, then the variable name is the character immediately following the $. Thus ${myTemp} and
$x refer to variable names "myTemp" and "x". See the variable command for details of how strings are assigned
to variables and how they are substituted for in input scripts.

(4) The line is broken into "words" separated by whitespace (tabs, spaces). Note that words can thus contain
letters, digits, underscores, or punctuation characters.

(5) The first word is the command name. All successive words in the line are arguments.

(6) Text with spaces can be enclosed in double quotes so it will be treated as a single argument. See the dump
modify or fix print commands for examples. A '#' or '$' character that in text between double quotes will not be
treated as a comment or substituted for as a variable.

3.3 Input script structure

This section describes the structure of a typical SPPARKS input script. The "examples" directory in the
SPPARKS distribution contains sample input scripts; the corresponding problems are discussed in this section,
and some are animated on the SPPARKS website.

A SPPARKS input script typically has 3 parts:

choice of application, solver, sweeper•
settings•
run a simulation•

The last 2 parts can be repeated as many times as desired. I.e. run a simulation, change some settings, run some
more, etc. Each of the 3 parts is now described in more detail. Remember that almost all the commands need only
be used if a non-default value is desired.

(1) Choice of application, solver, sweep method

Use the app_style, solve_style, and sweep commands to setup the kind of simulation you wish to run. Note that
sweeping is only relevant to applications that define a geometric lattice of event sites and only if you wish to
perform rejection kinetic Monte Carlo updates.

(2) Settings

47

https://spparks.github.io

Parameters for a simulation can be defined by application-specific commands or by generic commands that are
common to many kinds of applications. See the doc pages for individual applications for information on the
former. Examples of the latter are the stats and temperature commands.

The diag_style command can also be used to setup various diagnostic computations to perform during a
simulation.

(3) Run a simulation

A kinetic or Metropolis Monte Carlo simulation is performed using the run command.

3.4 Commands listed by category

This section lists all SPPARKS commands, grouped by category. The next section lists the same commands
alphabetically. Note that some commands are only usable with certain applications. Also, some style options for
some commands are part of specific SPPARKS packages, which means they cannot be used unless the package
was included when SPPARKS was built. Not all packages are included in a default SPPARKS build. These
dependencies are listed as Restrictions in the command's documentation.

Initialization commands:

app_style, create_box, create_sites, processors, read_sites, region, solve_style

Setting commands:

dimension, boundary, lattice, pair_coeff, pair_style, reset_time, sector, seed, sweep, set

Application-specific commands:

add_reaction, add_species, barrier, count, deposition, ecoord, inclusion, pin, temperature, volume

Output commands:

diag_style, dump, dump image, dump_modify, dump_one, stats, undump

Actions:

run,

Miscellaneous:

clear, echo, if, include, jump, label, log, next, print, shell, variable

3.5 Individual commands

This section lists all SPPARKS commands alphabetically, with a separate listing below of styles within certain
commands. The previous section lists the same commands, grouped by category. Note that commands which are
only usable with certain applications are listed in the next section.

app_style boundary clear create_box create_sites diag_style
dimension dump dump image dump_modify dump_one echo

48

if include jump label lattice log
next pair_coeff pair_style print processors read_sites

region reset_time run sector seed set
shell solve_style stats sweep undump variable

Application-specific commands. These are commands defined only for use by one or more applications. See the
command doc page for details. See the various app_style commands in the next section for a listing of all the
commands defined for individual applications.

add_reaction add_species am_build am cartesian_layer am pass am path
am path_layer am pathgen barrier count deep_length deep_width

deposition diffusion/multiphase ecoord elliopsoid_depth event inclusion
pin pulse temperature volume weld_shape_ellipse weld_shape_teardrop

Application styles. See the app_style command for one-line descriptions of each style or click on the style itself
for a full description:

am/ellipsoid chemistry diffusion diffusion/multiphase erbium ising ising/single membrane
phasefield/potts potts potts/am/bezier potts/am/path/gen potts/am/weld potts/grad potts/neigh potts/neighonly

potts/pin potts/quaternion potts/strain potts/strain/pin potts/weld potts/weld/jom relax sinter
sos test/group

Solve styles. See the solve_style command for one-line descriptions of each style or click on the style itself for a
full description:

group linear tree

Pair styles. See the pair_style command for one-line descriptions of each style or click on the style itself for a full
description:

lj/cut

Diagnostic styles. See the diag_style command for one-line descriptions of each style or click on the style itself
for a full description:

array cluster diffusion energy erbium propensity
sinter_avg_neck_area sinter_density sinter_free_energy_pore sinter_pore_curvature

49

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

9. Errors

This section describes the various kinds of errors you can encounter when using SPPARKS.

10.1 Common problems
10.2 Reporting bugs
10.3 Error & warning messages

9.1 Common problems

A SPPARKS simulation typically has two stages, setup and run. Many SPPARKS errors are detected at setup
time; others may not occur until the middle of a run.

SPPARKS tries to flag errors and print informative error messages so you can fix the problem. Of course
SPPARKS cannot figure out your physics mistakes, like choosing too big a timestep or setting up an invalid
lattice. If you find errors that SPPARKS doesn't catch that you think it should flag, please send an email to the
developers.

If you get an error message about an invalid command in your input script, you can determine what command is
causing the problem by looking in the log.spparks file or using the echo command to see it on the screen. For
example you can run your script as

spk_linux -echo screen <in.script

For a given command, SPPARKS expects certain arguments in a specified order. If you mess this up, SPPARKS
will often flag the error, but it may read a bogus argument and assign a value that is not what you wanted. E.g. if
the input parser reads the string "abc" when expecting an integer value, it will assign the value of 0 to a variable.

Generally, SPPARKS will print a message to the screen and exit gracefully when it encounters a fatal error.
Sometimes it will print a WARNING and continue on; you can decide if the WARNING is important or not. If
SPPARKS crashes or hangs without spitting out an error message first then it could be a bug (see this section) or
one of the following cases:

SPPARKS runs in the available memory each processor can allocate. All large memory allocations in the code are
done via C-style malloc's which will generate an error message if you run out of memory. Smaller chunks of
memory are allocated via C++ "new" statements. If you are unlucky you could run out of memory when one of
these small requests is made, in which case the code will crash, since SPPARKS doesn't trap on those errors.

Illegal arithmetic can cause SPPARKS to run slow or crash. This is typically due to invalid physics and numerics
that your simulation is computing. If you see wild energy values or NaN values in your SPPARKS output,
something is wrong with your simulation.

In parallel, one way SPPARKS can hang is due to how different MPI implementations handle buffering of
messages. If the code hangs without an error message, it may be that you need to specify an MPI setting or two
(usually via an environment variable) to enable buffering or boost the sizes of messages that can be buffered.

50

https://spparks.github.io

9.2 Reporting bugs

If you are confident that you have found a bug in SPPARKS, please send an email to the developers.

First, check the "New features and bug fixes" section of the SPPARKS WWW site to see if the bug has already
been reported or fixed.

If not, the most useful thing you can do for us is to isolate the problem. Run it on the smallest problem and fewest
number of processors and with the simplest input script that reproduces the bug.

In your email, describe the problem and any ideas you have as to what is causing it or where in the code the
problem might be. We'll request your input script and data files if necessary.

9.3 Error & warning messages

These are two alphabetic lists of the ERROR and WARNING messages SPPARKS prints out and the reason why.
If the explanation here is not sufficient, the documentation for the offending command may help. Grepping the
source files for the text of the error message and staring at the source code and comments is also not a bad idea!
Note that sometimes the same message can be printed from multiple places in the code.

Errors:

Adding site to bin it is not in
Internal SPPARKS error.

Adding site to illegal bin
Internal SPPARKS error.

All pair coeffs are not set
Self-explanatory.

All universe/uloop variables must have same # of values
Self-explanatory.

All variables in next command must be same style
Self-explanatory.

Another input script is already being processed
Cannot attempt to open a 2nd input script, when the original file is still being processed.

App cannot use both a KMC and rejection KMC solver
You cannot define both a solver and sweep option.

App did not set dt_sweep
Internal SPPARKS error.

App does not permit user_update yes
UNDOCUMENTED

App needs a KMC or rejection KMC solver
You must define either a solver or sweep option.

App relax requires a pair potential
Self-explanatory.

App style proc count is not valid for 1d simulation
There can only be 1 proc in y and z dimensions for 1d models.

App style proc count is not valid for 2d simulation
There can only be 1 proc in the z dimension for 2d models.

App_style command after simulation box is defined
Self-explanatory.

App_style specific command before app_style set
Self-explanatory.

51

https://spparks.github.io

Application cutoff is too big for processor sub-domain
There must be at least 2 bins per processor in each dimension where sectoring occurs.

Arccos of invalid value in variable formula
Argument of arccos() must be between -1 and 1.

Arcsin of invalid value in variable formula
Argument of arcsin() must be between -1 and 1.

BAD DONE
UNDOCUMENTED

BAD STENCIL
UNDOCUMENTED

BIN MISMATCH
UNDOCUMENTED

Bad neighbor site ID
UNDOCUMENTED

Bigint setting in spktype.h is invalid
UNDOCUMENTED

Boundary command after simulation box is defined
UNDOCUMENTED

Boundary command currently only supported by on-lattice apps
UNDOCUMENTED

Box bounds are invalid
Lo bound >= hi bound.

COUNT MISMATCH
UNDOCUMENTED

Can only read Neighbors for on-lattice applications
UNDOCUMENTED

Can only use ecoord command with app_style diffusion nonlinear
Self-explanatory.

Cannot color this combination of lattice and app
Coloring is not supported on this lattice for the neighbor dependencies of this application.

Cannot color without a lattice definition of sites
UNDOCUMENTED

Cannot color without contiguous site IDs
UNDOCUMENTED

Cannot create box after simulation box is defined
Self-explanatory.

Cannot create box with this application style
This application does not support spatial domains.

Cannot create sites after sites already exist
Self-explanatory.

Cannot create sites with undefined lattice
Must use lattice commands first to define a lattice.

Cannot create/grow a vector/array of pointers for %s
UNDOCUMENTED

Cannot define Schwoebel barrier without Schwoebel model
Self-explanatory.

Cannot dump JPG file
UNDOCUMENTED

Cannot open diag style cluster dump file
Self-explanatory.

Cannot open diag_style cluster dump file
Self-explanatory.

52

Cannot open diag_style cluster output file
Self-explanatory.

Cannot open dump file
Self-explanatory.

Cannot open file %s
Self-explanatory.

Cannot open gzipped file
Self-explantory.

Cannot open input script %s
Self-explanatory.

Cannot open log.spparks
Self-explanatory.

Cannot open logfile
Self-explanatory.

Cannot open logfile %s
Self-explanatory.

Cannot open screen file
The screen file specified as a command-line argument cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot open universe log file
For a multi-partition run, the master log file cannot be opened. Check that the directory you are running in
allows for files to be created.

Cannot open universe screen file
For a multi-partition run, the master screen file cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot perform deposition in parallel
UNDOCUMENTED

Cannot perform deposition with multiple sectors
UNDOCUMENTED

Cannot read Neighbors after sites already exist
UNDOCUMENTED

Cannot read Neighbors unless max neighbors is set
UNDOCUMENTED

Cannot read Sites after sites already exist
UNDOCUMENTED

Cannot read Values before sites exist or are read
UNDOCUMENTED

Cannot redefine variable as a different style
An equal-style variable can be re-defined but only if it was originally an equal-style variable.

Cannot run 1d simulation with nonperiodic Y or Z dimension
UNDOCUMENTED

Cannot run 2d simulation with nonperiodic Z dimension
UNDOCUMENTED

Cannot run application until simulation box is defined
Self-explanatory.

Cannot use %s command until sites exist
This command requires sites exist before using it in an input script.

Cannot use KMC solver in parallel with no sectors
Self-explanatory.

Cannot use color/strict rejection KMC with sectors
Self-explanatory.

Cannot use coloring without domain nx,ny,nz defined

53

UNDOCUMENTED
Cannot use create_sites basis with random lattice

Self-explanatory.
Cannot use diag_style cluster without a lattice defined

This diagnostic uses the lattice style to dump OpenDx files.
Cannot use dump_one for first snapshot in dump file

Self-explanatory.
Cannot use random rejection KMC in parallel with no sectors

Self-explanatory.
Cannot use raster rejection KMC in parallel with no sectors

Self-explanatory.
Cannot use region INF or EDGE when box does not exist

Can only define a region with these parameters after a simulation box has been defined.
Choice of sector stop led to no rKMC events

Self-explanatory.
Color stencil is incommensurate with lattice size

Since coloring induces a pattern of colors, this pattern must fit an integer number of times into a periodic
lattice.

Could not find dump ID in dump_modify command
Self-explanatory.

Could not find dump ID in dump_one command
Self-explanatory.

Could not find dump ID in undump command
Self-explanatory.

Create_box command before app_style set
Self-explanatory.

Create_box region ID does not exist
Self-explanatory.

Create_box region must be of type inside
Self-explanatory.

Create_sites command before app_style set
Self-explanatory.

Create_sites command before simulation box is defined
Self-explanatory.

Create_sites region ID does not exist
Self-explanatory.

Creating a quantity application does not support
The application defines what variables it supports. You cannot set a variable with the create_sites
command for a variable that isn't supported.

Data file dimension does not match existing box
UNDOCUMENTED

Data file maxneigh setting does not match existing sites
UNDOCUMENTED

Data file number of sites does not match existing sites
UNDOCUMENTED

Data file simluation box different that current box
UNDOCUMENTED

Diag cluster does not work if ncluster > 2^31
UNDOCUMENTED

Diag cluster dvalue in neighboring clusters do not match
Internal SPPARKS error.

Diag cluster ivalue in neighboring clusters do not match

54

Internal SPPARKS error.
Diag propensity requires KMC solve be performed

Only KMC solvers compute a propensity for sites and the system.
Diag style cluster dump file name too long

Self-explanatory.
Diag style incompatible with app style

The lattice styles of the diagnostic and the on-lattice application must match.
Diag_style cluster incompatible with lattice style

UNDOCUMENTED
Diag_style cluster nx,ny,nz = 0

UNDOCUMENTED
Diag_style command before app_style set

Self-explanatory.
Diag_style diffusion requires app_style diffusion

Self-explanatory.
Diag_style erbium requires app_style erbium

UNDOCUMENTED
Did not assign all sites correctly

One or more sites in the read_sites file were not assigned to a processor correctly.
Did not create correct number of sites

One or more created sites were not assigned to a processor correctly.
Did not reach event propensity threshhold

UNDOCUMENTED
Dimension command after lattice is defined

Self-explanatory.
Dimension command after simulation box is defined

Self-explanatory.
Divide by 0 in variable formula

Self-explanatory.
Dump command before app_style set

Self-explanatory.
Dump command can only be used for spatial applications

Self-explanatory.
Dump image boundary requires lattice app

UNDOCUMENTED
Dump image crange must be set

UNDOCUMENTED
Dump image drange must be set

UNDOCUMENTED
Dump image persp option is not yet supported

UNDOCUMENTED
Dump image requires one snapshot per file

UNDOCUMENTED
Dump image with quantity application does not support

UNDOCUMENTED
Dump requires propensity but no KMC solve performed

Only KMC solvers compute propensity for sites.
Dump_modify command before app_style set

Self-explanatory.
Dump_modify region ID does not exist

UNDOCUMENTED
Dump_modify scolor requires integer attribute for dump image color

55

UNDOCUMENTED
Dump_modify sdiam requires integer attribute for dump image diameter

UNDOCUMENTED
Dump_one command before app_style set

Self-explanatory.
Dumping a quantity application does not support

The application defines what variables it supports. You cannot output a variable in a dump that isn't
supported.

Failed to allocate %ld bytes for array %s
Your SPPARKS simulation has run out of memory. You need to run a smaller simulation or on more
processors.

Failed to reallocate %ld bytes for array %s
Your SPPARKS simulation has run out of memory. You need to run a smaller simulation or on more
processors.

GHOST IN OWNED BIN
UNDOCUMENTED

Ghost connection was not found
Internal SPPARKS error. Should not occur.

Ghost site was not found
Internal SPPARKS error. Should not occur.

Illegal ... command
Self-explanatory. Check the input script syntax and compare to the documentation for the command. You
can use -echo screen as a command-line option when running SPPARKS to see the offending line.

Incorrect args for pair coefficients
Self-explanatory.

Incorrect lattice neighbor count
Internal SPPARKS error.

Incorrect site format in data file
Self-explanatory.

Incorrect value format in data file
Self-explanatory.

Input line too long after variable substitution
This is a hard (very large) limit defined in the input.cpp file.

Input line too long: %s
This is a hard (very large) limit defined in the input.cpp file.

Invalid attribute in dump text command
UNDOCUMENTED

Invalid color in dump_modify command
UNDOCUMENTED

Invalid command-line argument
One or more command-line arguments is invalid. Check the syntax of the command you are using to
launch SPPARKS.

Invalid diag_style command
UNDOCUMENTED

Invalid dump image filename
UNDOCUMENTED

Invalid dump image persp value
UNDOCUMENTED

Invalid dump image theta value
UNDOCUMENTED

Invalid dump image zoom value
UNDOCUMENTED

56

Invalid dump style
UNDOCUMENTED

Invalid dump_modify threshold operator
Self-explanatory.

Invalid event count for app_style test/group
Number of events must be > 0.

Invalid image color range
UNDOCUMENTED

Invalid image up vector
UNDOCUMENTED

Invalid keyword in dump command
Self-explanatory.

Invalid keyword in variable formula
UNDOCUMENTED

Invalid math function in variable formula
The math function is not recognized.

Invalid number of sectors
Self-explanatory.

Invalid pair style
Self-explanatory.

Invalid probability bounds for app_style test/group
Self-explanatory.

Invalid probability bounds for solve_style group
Self-explanatory.

Invalid probability delta for app_style test/group
Self-explanatory.

Invalid region style
Self-explanatory.

Invalid site ID in Sites section of data file
Self-explanatory.

Invalid syntax in variable formula
Self-explanatory.

Invalid value setting in diag_style erbium
UNDOCUMENTED

Invalid variable evaluation in variable formula
A variable used in a formula could not be evaluated.

Invalid variable in next command
Self-explanatory.

Invalid variable name
Variable name used in an input script line is invalid.

Invalid variable name in variable formula
Variable name is not recognized.

Invalid variable style with next command
Variable styles equal and world cannot be used in a next command.

Invalid volume setting
Volume must be set to value > 0.

KMC events are not implemented in app
Not every application supports KMC solvers.

LINK MISMATCH
UNDOCUMENTED

Label wasn't found in input script
Self-explanatory.

57

Lattice command before app_style set
Self-explanatory.

Lattice style does not match dimension
Self-explanatory.

Log of zero/negative in variable formula
Self-explanatory.

MPI_SPK_BIGINT and bigint in spktype.h are not compatible
UNDOCUMENTED

MPI_SPK_TAGINT and tagint in spktype.h are not compatible
UNDOCUMENTED

Mask logic not implemented in app
Not every application supports masking.

Mismatch in counting for dbufclust
Self-explanatory.

Must read Sites before Neighbors
Self-explanatory.

Must use -in switch with multiple partitions
A multi-partition simulation cannot read the input script from stdin. The -in command-line option must be
used to specify a file.

Must use value option before basis option in create_sites command
Self-explanatory.

No Neighbors defined in site file
UNDOCUMENTED

No Sites defined in site file
UNDOCUMENTED

No reactions defined for chemistry app
Use the add_reaction command to specify one or more reactions.

No solver class defined
Self-explanatory.

Off-lattice application data file cannot have maxneigh setting
UNDOCUMENTED

One or more Hamiltonian params are unset
UNDOCUMENTED

One or more sites have invalid values
The application only allows sites to be initialized with specific values.

PBC remap of site failed
Internal SPPARKS error.

Pair_coeff command before app_style set
Self-explanatory.

Pair_coeff command before pair_style is defined
Self-explanatory.

Pair_style command before app_style set
Self-explanatory.

Per-processor solve tree is too big
UNDOCUMENTED

Per-processor system is too big
UNDOCUMENTED

Periodic box is not a multiple of lattice spacing
UNDOCUMENTED

Power by 0 in variable formula
Self-explanatory.

Processor partitions are inconsistent

58

The total number of processors in all partitions must match the number of processors LAMMPS is
running on.

Processors command after simulation box is defined
Self-explanatory.

Random lattice has no connectivity
The cutoff distance is likely too short.

Reaction ID %s already exists
Cannot re-define a reaction.

Reaction cannot have more than MAX_PRODUCT products
Self-explanatory.

Reaction has no numeric rate
Self-explanatory.

Reaction must have 0,1,2 reactants
Self-explanatory.

Read_sites command before app_style set
Self-explanatory.

Region ID for dump text does not exist
UNDOCUMENTED

Region command before app_style set
Self-explanatory.

Region intersect region ID does not exist
Self-explanatory.

Region union region ID does not exist
Self-explanatory.

Rejection events are not implemented in app
Self-explanatory.

Reset_time command before app_style set
Self-explanatory.

Reuse of dump ID
UNDOCUMENTED

Reuse of region ID
Self-explanatory.

Run command before app_style set
Self-explanatory.

Run upto value is before current time
Self-explanatory.

SITE MISMATCH
UNDOCUMENTED

SITES NOT IN BINS
UNDOCUMENTED

Seed command has not been used
The seed command must be used if another command requires random numbers.

Set command before sites exist
Self-explanatory.

Set command region ID does not exist
Self-explanatory.

Set if test on quantity application does not support
The application defines what variables it supports. You cannot do an if test with the set command on a
variable that isn't supported.

Setting a quantity application does not support
The application defines what variables it supports. You cannot set a variable with the set command on a
variable that isn't supported.

59

Site file has no Sites, Neighbors, or Values
UNDOCUMENTED

Site not in my bin domain
Internal SPPARKS error.

Site-site interaction was not found
Internal SPPARKS error.

Smallint setting in spktype.h is invalid
UNDOCUMENTED

Solve_style command before app_style set
Self-explanatory.

Species ID %s already exists
Self-explanatory.

Species ID %s does not exist
Self-explanatory.

Sqrt of negative in variable formula
Self-explanatory.

Stats command before app_style set
Self-explanatory.

Substitution for illegal variable
Self-explanatory.

System in site file is too big
UNDOCUMENTED

Tagint setting in spktype.h is invalid
UNDOCUMENTED

Temperature cannot be 0.0 for app erbium
UNDOCUMENTED

Threshold for a quantity application does not support
The application defines what variables it supports. You cannot do a threshold test with the dump
command on a variable that isn't supported.

Too many neighbors per site
Internal SPPARKS error.

Unbalanced quotes in input line
No matching end double quote was found following a leading double quote.

Undump command before app_style set
Self-explanatory.

Unexpected end of data file
Self-explanatory.

Universe/uloop variable count < # of partitions
A universe or uloop style variable must specify a number of values >= to the number of processor
partitions.

Unknown command: %s
The command is not known to SPPARKS. Check the input script.

Unknown identifier in data file: %s
Self-explanatory.

Unknown species in reaction command
Self-explanatory.

Unrecognized command
The command is assumed to be application specific, but is not known to SPPARKS. Check the input
script.

Use of region with undefined lattice
The lattice command must be used before defining a geometric region.

Variable for dump image center is invalid style

60

UNDOCUMENTED
Variable for dump image persp is invalid style

UNDOCUMENTED
Variable for dump image phi is invalid style

UNDOCUMENTED
Variable for dump image theta is invalid style

UNDOCUMENTED
Variable for dump image zoom is invalid style

UNDOCUMENTED
Variable name for dump image center does not exist

UNDOCUMENTED
Variable name for dump image persp does not exist

UNDOCUMENTED
Variable name for dump image phi does not exist

UNDOCUMENTED
Variable name for dump image theta does not exist

UNDOCUMENTED
Variable name for dump image zoom does not exist

UNDOCUMENTED
Variable name must be alphanumeric or underscore characters

Self-explanatory.
World variable count doesn't match # of partitions

A world-style variable must specify a number of values equal to the number of processor partitions.

Warnings:

%d propensities were reset to hi value, max hi = %g
UNDOCUMENTED

%d propensities were reset to lo value, max lo = %g
UNDOCUMENTED

Using dump image boundary with spheres
UNDOCUMENTED

61

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

5. Example problems

The SPPARKS distribution includes an examples sub-directory with several sample problems. Each problem is in
a sub-directory of its own. Most are small models that can be run quickly, requiring at most a couple of minutes to
run on a desktop machine. Each problem has an input script (in.*) and produces a log file (log.*) and dump file
(dump.*) when it runs. A few sample log file outputs on different machines and different numbers of processors
are included in the directories to compare your answers to. E.g. a log file like log.potts.foo.P means it ran on P
processors of machine "foo".

In some cases, the dump files produced by the example runs can be animated using the various visuzlization tools,
such as the Pizza.py toolkit referenced in the Additional Tools section of the SPPARKS documentation.
Animations of some of these examples can be viewed on the Movies section of the SPPARKS WWW Site.

These are the sample problems in the examples sub-directories:

groups test of group-based KMC solver
ising standard Ising model
membrane membrane model of pore formation around protein inclusions
potts multi-state Potts model for grain growth

Here is how you might run and visualize one of the sample problems:

cd examples/potts
cp ../../src/spk_linux . # copy SPPARKS executable to this dir
spk_linux <in.potts # run the problem

Running the simulation produces the files dump.potts and log.spparks.

If you add dump image line(s) to the input script a series of JPG images will be produced by the run. These can be
viewed individually or turned into a movie or animated by tools like ImageMagick or QuickTime or various
Windows-based tools. See the dump image doc page for more details. E.g. this Imagemagick command would
create a GIF file suitable for viewing in a browser.

% convert -loop 1 *.jpg foo.gif

There is also a COUPLE directory with examples of how to use SPPARKS as a library, either by itself or in
tandem with another code or library. See the COUPLE/README file to get started.

62

https://spparks.github.io
https://spparks.github.io

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

10. Future plans

This section lists MC applications and features we are planning to add to SPPARKS. You can send an email to the
developers if you are interested in any of these topics.

off-lattice surface growth and diffusion•
chemical vapor deposition•
electromigration (Kristi Harris, UMBC)•
nanoporous aging (Greg Wagner, Sandia)•
pore migration (Veena Tikare, Sandia)•

63

https://spparks.github.io

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

4. How-to discussions

The following sections describe how to perform various operations in SPPARKS.

4.1 Running multiple simulations from one input script
4.2 Coupling SPPARKS to other codes
4.3 Library interface to SPPARKS

The example input scripts included in the SPPARKS distribution and highlighted in this section also show how to
setup and run various kinds of problems.

4.1 Running multiple simulations from one input script

This can be done in several ways. See the documentation for individual commands for more details on how these
examples work.

If "multiple simulations" means continue a previous simulation for more timesteps, then you simply use the run
command multiple times. For example, this script

app_style ising/2d/4n 100 100 12345
...
run 1.0
run 1.0
run 1.0
run 1.0
run 1.0

would run 5 successive simulations of the same system for a total of 5.0 seconds of elapsed time.

If you wish to run totally different simulations, one after the other, the clear command can be used in between
them to re-initialize SPPARKS. For example, this script

app_style ising/2d/4n 100 100 12345
...
run 1.0
clear
app_style ising/2d/4n 200 200 12345
...
run 1.0

would run 2 independent simulations, one after the other.

For large numbers of independent simulations, you can use variables and the next and jump commands to loop
over the same input script multiple times with different settings. For example, this script, named in.runs

variable d index run1 run2 run3 run4 run5 run6 run7 run8
shell cd $d
app_style ising/2d/4n 100 100 12345
include temperature.txt
run 1.0
shell cd ..
clear
next d

64

https://spparks.github.io

jump in.runs

would run 8 simulations in different directories, using a temperature.txt file in each directory with an input
command to set the temperature. The same concept could be used to run the same system at 8 different sizes,
using a size variable and storing the output in different log files, for example

variable a loop 8
variable size index 100 200 400 800 1600 3200 6400 10000
log log.${size}
app_style ising/2d/4n ${size} ${size} 12345
run 1.0
next size
next a
jump in.runs

All of the above examples work whether you are running on 1 or multiple processors, but assumed you are
running SPPARKS on a single partition of processors. SPPARKS can be run on multiple partitions via the
"-partition" command-line switch as described in this section of the manual.

In the last 2 examples, if SPPARKS were run on 3 partitions, the same scripts could be used if the "index" and
"loop" variables were replaced with universe-style variables, as described in the variable command. Also, the
"next size" and "next a" commands would need to be replaced with a single "next a size" command. With these
modifications, the 8 simulations of each script would run on the 3 partitions one after the other until all were
finished. Initially, 3 simulations would be started simultaneously, one on each partition. When one finished, that
partition would then start the 4th simulation, and so forth, until all 8 were completed.

4.2 Coupling SPPARKS to other codes

SPPARKS is designed to allow it to be coupled to other codes. For example, an atomistic code might relax atom
positions and pass those positions to SPPARKS. Or a continuum finite element (FE) simulation might use a
Monte Carlo relaxation to formulate a boundary condition on FE nodal points, compute a FE solution, and return
the results to the MC calculation.

SPPARKS can be coupled to other codes in at least 3 ways. Each has advantages and disadvantages, which you'll
have to think about in the context of your application.

(1) Define a new diag_style command that calls the other code. In this scenario, SPPARKS is the driver code.
During its timestepping, the diagnostic is invoked, and can make library calls to the other code, which has been
linked to SPPARKS as a library. See this section of the documentation for info on how to add a new diagnostic to
SPPARKS.

(2) Define a new SPPARKS command that calls the other code. This is conceptually similar to method (1), but in
this case SPPARKS and the other code are on a more equal footing. Note that now the other code is not called
during the even loop of a SPPARKS run, but between runs. The SPPARKS input script can be used to alternate
SPPARKS runs with calls to the other code, invoked via the new command.

In this scenario, the other code can be called as a library, as in (1), or it could be a stand-alone code, invoked by a
system() call made by the command (assuming your parallel machine allows one or more processors to start up
another program). In the latter case the stand-alone code could communicate with SPPARKS thru files that the
command writes and reads.

See this section of the documentation for how to add a new command to SPPARKS.

65

(3) Use SPPARKS as a library called by another code. In this case the other code is the driver and calls
SPPARKS as needed. Or a wrapper code could link and call both SPPARKS and another code as libraries.

Examples of driver codes that call SPPARKS as a library are included in the examples/COUPLE directory of the
SPPARKS distribution; see examples/COUPLE/README for more details:

simple: simple driver programs in C++ and C which invoke SPPARKS as a library (NOTE: not yet
available)

•

lammps_spparks: coupling of SPPARKS and LAMMPS, to couple a kinetic Monte Carlo model for grain
growth using MD to calculate strain induced across grain boundaries

•

This section of the documentation describes how to build SPPARKS as a library. Once this is done, you can
interface with SPPARKS either via C++, C, Fortran, or Python (or any other language that supports a vanilla
C-like interface). For example, from C++ you could create one (or more) "instances" of SPPARKS, pass it an
input script to process, or execute individual commands, all by invoking the correct class methods in SPPARKS.
From C or Fortran you can make function calls to do the same things. See Section_python of the manual for a
description of the Python wrapper provided with SPPARKS that operates through the SPPARKS library interface.

The files src/library.cpp and library.h contain the C-style interface to SPPARKS. See Section_howto 3 of the
manual for a description of the interface and how to extend it for your needs.

Note that the spparks_open() function that creates an instance of SPPARKS takes an MPI communicator as an
argument. This means that instance of SPPARKS will run on the set of processors in the communicator. Thus the
calling code can run SPPARKS on all or a subset of processors. For example, a wrapper script might decide to
alternate between SPPARKS and another code, allowing them both to run on all the processors. Or it might
allocate half the processors to SPPARKS and half to the other code and run both codes simultaneously before
syncing them up periodically. Or it might instantiate multiple instances of SPPARKS to perform different
calculations.

4.3 Library interface to SPPARKS

As described in Section_start 4, SPPARKS can be built as a library, so that it can be called by another code, used
in a coupled manner with other codes, or driven through a Python interface.

All of these methodologies use a C-style interface to SPPARKS that is provided in the files src/library.cpp and
src/library.h. The functions therein have a C-style argument list, but contain C++ code you could write yourself in
a C++ application that was invoking SPPARKS directly. The C++ code in the functions illustrates how to invoke
internal SPPARKS operations. Note that SPPARKS classes are defined within a SPPARKS namespace
(SPPARKS_NS) if you use them from another C++ application.

Library.cpp contains these 4 functions:

void spparks_open(int, char **, MPI_Comm, void **);
void spparks_close(void *);
void spparks_file(void *, char *);
char *spparks_command(void *, char *);

The spparks_open() function is used to initialize SPPARKS, passing in a list of strings as if they were
command-line arguments when SPPARKS is run in stand-alone mode from the command line, and a MPI
communicator for SPPARKS to run under. It returns a ptr to the SPPARKS object that is created, and which is
used in subsequent library calls. The spparks_open() function can be called multiple times, to create multiple
instances of SPPARKS.

66

https://www.lammps.org

SPPARKS will run on the set of processors in the communicator. This means the calling code can run SPPARKS
on all or a subset of processors. For example, a wrapper script might decide to alternate between SPPARKS and
another code, allowing them both to run on all the processors. Or it might allocate half the processors to
SPPARKS and half to the other code and run both codes simultaneously before syncing them up periodically. Or
it might instantiate multiple instances of SPPARKS to perform different calculations.

The spparks_close() function is used to shut down an instance of SPPARKS and free all its memory.

The spparks_file() and spparks_command() functions are used to pass a file or string to SPPARKS as if it were an
input script or single command in an input script. Thus the calling code can read or generate a series of SPPARKS
commands one line at a time and pass it thru the library interface to setup a problem and then run it, interleaving
the spparks_command() calls with other calls to extract information from SPPARKS, perform its own operations,
or call another code's library.

Other useful functions are also included in library.cpp. For example:

void *spparks_extract(void *, char *)
double *spparks_energy()

These can extract various global or per-site quantities from SPPARKS so that a driver application can access the
values or even reset them. See the library.cpp file and its associated header file library.h for details.

The key idea of the library interface is that you can write any functions you wish to define how your code talks to
SPPARKS and add them to src/library.cpp and src/library.h, as well as to the Python interface. The routines you
add can access or change any SPPARKS data you wish. The examples/COUPLE and python directories have
example C++ and C and Python codes which show how a driver code can link to SPPARKS as a library, run
SPPARKS on a subset of processors, grab data from SPPARKS, change it, and put it back into SPPARKS.

67

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

1. Introduction

These sections provide an overview of what SPPARKS can do, describe what it means for SPPARKS to be an
open-source code, and acknowledge the funding and people who have contributed to SPPARKS.

1.1 What is SPPARKS
1.2 SPPARKS features
1.3 Open source distribution
1.4 Acknowledgments and citations

1.1 What is SPPARKS

SPPARKS is a Monte Carlo code that has algorithms for kinetic Monte Carlo (KMC), rejection KMC (rKMC),
and Metropolis Monte Carlo (MMC). On-lattice and off-lattice applications with spatial sites on which "events"
occur can be simulated in parallel.

KMC is also called true KMC or rejection-free KMC. rKMC is also called null-event MC. In a generic sense the
code's KMC and rKMC solvers catalog a list of events, each with an associated probability, choose a single event
to perform, and advance time by the correct amount. Events may be chosen individually at random, or a sweep of
enumarated sites can be performed to select possible events in a more ordered fashion.

Note that rKMC is different from Metropolis MC, which is sometimes called thermodynamic-equilibrium MC or
barrier-free MC, in that rKMC still uses rates to define events, often associated with the rate for the system to
cross some energy barrier. Thus both KMC and rKMC track the dynamic evolution of a system in a time-accurate
manner as events are performed. Metropolis MC is typically used to sample states from a system in equilibrium or
to drive a system to equilibrium (energy minimization). It does this be performing (possibly) non-physical events.
As such it has no requirement to sample events with the correct relative probabilities or to limit itself to physical
events (e.g. it can change an atom to a new species). Because of this it also does not evolve the system in a
time-accurate manner; in general there is no "time" associated with Metropolis MC events.

Applications are implemented in SPPARKS which define events and their probabilities and acceptance/rejection
criteria. They are coupled to solvers or sweepers to perform KMC or rKMC simulations. The KMC or rKMC
options for an application in SPPARKS can be written to define rates based on energy differences between the
initial and final state of an event and a Metropolis-style accept/reject criterion based on the Boltzmann factor
SPPARKS will then perform a Metropolis-style Monte Carlo simulation.

In parallel, a geometric partitioning of the simulation domain is performed. Sub-partitioning of processor domains
into colors or quadrants (2d) and octants (3d) is done to enable multiple events to be performed on multiple
processors simultaneously. Communication of boundary information is performed as needed.

Parallelism can also be invoked to perform multiple runs on a collection of processors, for statistical puposes.

SPPARKS is designed to be easy to modify and extend. For example, new solvers and sweeping rules can be
added, as can new applications. Applications can define new commands which are read from the input script.

SPPARKS is written in C++. It runs on single-processor desktop or laptop machines, but for some applications,
can also run on parallel computers. SPPARKS will run on any parallel machine that compiles C++ and supports
the MPI message-passing library. This includes distributed- or shared-memory machines.

68

https://spparks.github.io
http://www-unix.mcs.anl.gov/mpi

SPPARKS is a freely-available open-source code. See the SPPARKS WWW Site for download information. It is
distributed under the terms of the GNU Public License (GPL), or sometimes by request under the terms of the
GNU Lesser General Public License (LGPL), which means you can use or modify the code however you wish.
The only restrictions imposed by the GPL or LGPL are on how you distribute the code further. See this section for
a brief discussion of the open-source philosophy.

1.2 SPPARKS features

These are three kinds of applications in SPPARKS:

on-lattice•
off-lattice•
general•

On-lattice applications define static event sites with a fixed neighbor connectivity. Off-lattice applications define
mobile event sites such as particles. A particle's neighbors are typically specified by a cutoff distance. General
applications have no spatial component.

The set of on-lattice applications currently in SPPARKS are:

diffusion model•
Ising model•
Potts model in many variants•
membrane model•
sintering model•

The set of off-lattice applications currently in SPPARKS are:

Metropolis atomic relaxation model•

The set of general applications currently in SPPARKS are:

biochemcial reaction network model•
test driver for solvers using a synthetic biochemical network•

These are the KMC solvers currently available in SPPARKS and their scaling properties:

linear search, O(N)•
tree search, O(logN)•
composition-rejection search, O(1)•

Pre- and post-processing:

Our group has written and released a separate toolkit called Pizza.py which provides tools which can be used to
setup, analyze, plot, and visualize data for SPPARKS simulations. Pizza.py is written in Python and is available
for download from the Pizza.py WWW site.

69

https://spparks.github.io
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/licenses/lgpl-2.1.html
https://lammps.github.io/pizza
http://www.python.org
https://lammps.github.io/pizza

1.3 Open source distribution

SPPARKS comes with no warranty of any kind. As each source file states in its header, it is a copyrighted code
that is distributed free-of- charge, under the terms of the GNU Public License (GPL), or sometimes by request
under the terms of the GNU Lesser General Public License (LGPL). This is often referred to as open-source
distribution - see www.gnu.org or www.opensource.org for more details. The legal text of the GPL or LGPL is in
the LICENSE file that is included in the SPPARKS distribution.

Here is a summary of what the GPL means for SPPARKS users:

(1) Anyone is free to use, modify, or extend SPPARKS in any way they choose, including for commercial
purposes.

(2) If you distribute a modified version of SPPARKS, it must remain open-source, meaning you distribute source
code under the terms of the GPL. You should clearly annotate such a code as a derivative version of SPPARKS.

(3) If you distribute any code that used SPPARKS source code, including calling it as a library, then that must
also be open-source, meaning you distribute its source code under the terms of the GPL.

(4) If you give SPPARKS files to someone else, the GPL LICENSE file and source file headers (including the
copyright and GPL notices) should remain part of the code.

In the spirit of an open-source code, if you use SPPARKS for something useful or if you fix a bug or add a new
feature or applicaton to the code, let us know. We would like to include your contribution in the released version
of the code and/or advertise your success on our WWW page.

1.4 Acknowledgments and citations

SPPARKS is distributed by Sandia National Laboratories. SPPARKS development has been funded by the US
Department of Energy (DOE), through its LDRD and ASC programs.

The Authors page of the SPPARKS website lists the developers and their contact info, along with others who
have contributed code and expertise to the developement of SPPARKS.

70

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/licenses/lgpl-2.1.html
http://www.gnu.org
http://www.opensource.org
http://www.sandia.gov
http://www.doe.gov
http://www.doe.gov
https://spparks.github.io/authors.html

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

8. Modifying & extending SPPARKS

SPPARKS is designed in a modular fashion so as to be easy to modify and extend with new functionality.

In this section, changes and additions users can make are listed along with minimal instructions. If you add a new
feature to SPPARKS and think it will be of interest to general users, we encourage you to submit it to the
developers for inclusion in the released version of SPPARKS.

The best way to add a new feature is to find a similar feature in SPPARKS and look at the corresponding source
and header files to figure out what it does. You will need some knowledge of C++ to be able to understand the
hi-level structure of SPPARKS and its class organization, but functions (class methods) that do actual
computations are written in vanilla C-style code and operate on simple C-style data structures (vectors and
arrays).

Most of the new features described in this section require you to write a new C++ derived class. Creating a new
class requires 2 files, a source code file (*.cpp) and a header file (*.h). The derived class must provide certain
methods to work as a new option. Depending on how different your new feature is compared to existing features,
you can either derive from the base class itself, or from a derived class that already exists. Enabling SPPARKS to
invoke the new class is as simple as adding two lines to the style_user.h file, in the same syntax as other
SPPARKS classes are specified in the style.h file.

The advantage of C++ and its object-orientation is that all the code and variables needed to define the new feature
are in the 2 files you write, and thus shouldn't make the rest of SPPARKS more complex or cause side-effect
bugs.

Here is a concrete example. Suppose you write 2 files app_foo.cpp and app_foo.h that define a new class AppFoo
that implements a Monte Carlo model described in the classic 1997 paper by Foo, et al. If you wish to invoke that
application in a SPPARKS input script with a command like

app_style foo 0.1 3.5

you put your 2 files in the SPPARKS src directory and re-make the code. The app_foo.h file should have these
lines at the top

#ifdef APP_CLASS
AppStyle(foo,AppFoo)
#else

where "foo" is the style keyword to be used in the app_style command, and AppFoo is the class name in your
C++ files.

When you re-make SPPARKS, your new application becomes part of the executable and can be invoked with a
app_style command like the example above. Arguments like 0.1 and 3.5 can be defined and processed by your
new class.

Here is a list of the new features that can be added in this way.

Application styles•
Diagnostic styles•
Input script commands•
Solve styles•

71

https://spparks.github.io

As illustrated by the application example, these options are referred to in the SPPARKS documentation as the
"style" of a particular command.

The instructions below give the header file for the base class that these styles are derived from. Public variables in
that file are ones used and set by the derived classes which are also used by the base class. Sometimes they are
also used by the rest of SPPARKS. Virtual functions in the base class header file which are set = 0 are ones you
must define in your new derived class to give it the functionality SPPARKS expects. Virtual functions that are not
set to 0 are functions you can optionally define.

Application styles

In SPPARKS, applications are what define the simulation model that is evolved via Monte Carlo algorithms. A
new model typically requires adding a new application to the code. Read the doc page for the app_style command
to understand the distinction between on-lattice and off-lattice applications. A new off-lattice application can be
anything you wish. On-lattice applications are derive from the AppLattice class.

For on-lattice and off-lattice applications, here is a brief description of methods you define in your new derived
class. Some of them are required; some are optional. See app.h for details.

input_app additional commands the application defines
grow_app set pointers to per-site arrays used by the application
init_app initialize the application before a run
site_energy compute energy of a site
site_event_rejection peform an event with null-bin rejection (for rKMC)
site_propensity compute propensity of all events on a site (for KMC)
site_event perform an event (for KMC)

Note that two of the methods are required if you want your application to perform kinetic Monte Carlo (KMC)
with a solver. One of the methods is required if you want your application to perform rejection KMC (rKMC)
with a sweep method.

The constructor for your application class also needs to define, to insure proper operation with the "KMC
solvers'_solve.html and rejection KMC sweep methods. These are the flags, all of which have default values set in
app_lattice.cpp:

ninteger how many integer values are defined per site
ndouble how many floating point values are defined per site
delpropensity how many neighbors away values are needed to compute propensity
delevent how many neighbors away may the value can be changed by an event
allow_kmc 1 if methods are provided for KMC
allow_rejection 1 if methods are provided for rejection KMC
allow_masking 1 if rKMC method supports masking
numrandom # of random numbers used by the site_event_rejection method

Diagnostic styles

Diagnostic classes compute some form of analysis periodically during a simulation. See the diag_style command
for details.

72

To add a new diagnostic, here is a brief description of methods you define in your new derived class. Some of
them are required; some are optional. See diag.h for details.

init setup the computation
compute perform the analysis computation
stats_header what to add to statistics header for this diagnostic
stats fields added to statistics by this diagnostic

Input script commands

New commands can be added to SPPARKS input scripts by adding new classes that have a "command" method
and are listed in the Command sections of style_user.h (or style.h). For example, the shell commands (cd, mkdir,
rm, etc) are implemented in this fashion. When such a command is encountered in the SPPARKS input script,
SPPARKS simply creates a class with the corresponding name, invokes the "command" method of the class, and
passes it the arguments from the input script. The command method can perform whatever operations it wishes on
SPPARKS data structures.

The single method your new class must define is as follows:

command operations performed by the new command
Of course, the new class can define other methods and variables as needed.

Solve styles

In SPPARKS, a solver performs the kinetic Monte Carlo (KMC) operation of selecting an event from a list of
events and associated probabilities. See the solve_style command for details.

To add a new KMC solver, here is a brief description of methods you define in your new derived class. Some of
them are required; some are optional. See diag.h for details.

Here is a brief description of methods you define in your new derived class. All of them are required. See solve.h
for details.

clone make a copy of the solver for use within a sector of the domain
init initialize the solver
update update one or more event probabilities
resize change the number of events in the list
event select an event and associated timestep

(Foo) Foo, Morefoo, and Maxfoo, J of Classic Monte Carlo Applications, 75, 345 (1997).

73

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

6. Performance & scalability

Eventually this section will highlight SPPARKS performance in serial and parallel on interesting Monte Carlo
benchmarks.

74

https://spparks.github.io

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

9. Python interface to SPPARKS

This section describes how to build and use SPPARKS via a Python interface.

9.1 Building SPPARKS as a shared library•
9.2 Installing the Python wrapper into Python•
9.3 Extending Python with MPI to run in parallel•
9.4 Testing the Python-SPPARKS interface•
9.5 Using SPPARKS from Python•
9.6 Example Python scripts that use SPPARKS•

The SPPARKS distribution includes the file python/spparks.py which wraps the library interface to SPPARKS.
This file makes it is possible to run SPPARKS, invoke SPPARKS commands or give it an input script, extract
SPPARKS results, an modify internal SPPARKS variables, either from a Python script or interactively from a
Python prompt. You can do the former in serial or parallel. Running Python interactively in parallel does not
generally work, unless you have a package installed that extends your Python to enable multiple instances of
Python to read what you type.

Python is a powerful scripting and programming language which can be used to wrap software like SPPARKS
and other packages. It can be used to glue multiple pieces of software together, e.g. to run a coupled or multiscale
model. See Section section of the manual for more ideas about coupling SPPARKS to other codes. See
Section_start 4 about how to build SPPARKS as a library, and Section_howto 3 for a description of the library
interface provided in src/library.cpp and src/library.h and how to extend it for your needs. As described below,
that interface is what is exposed to Python. It is designed to be easy to add functions to. This can easily extend the
Python inteface as well. See details below.

By using the Python interface, SPPARKS can also be coupled with a GUI or other visualization tools that display
graphs or animations in real time as SPPARKS runs. Examples of such scripts may eventually be included in the
python directory.

Two advantages of using Python are how concise the language is, and that it can be run interactively, enabling
rapid development and debugging of programs. If you use it to mostly invoke costly operations within SPPARKS,
such as running a simulation for a reasonable number of timesteps, then the overhead cost of invoking SPPARKS
thru Python will be negligible.

Before using SPPARKS from a Python script, you need to do two things. You need to build SPPARKS as a
dynamic shared library, so it can be loaded by Python. And you need to tell Python how to find the library and the
Python wrapper file python/spparks.py. Both these steps are discussed below. If you wish to run SPPARKS in
parallel from Python, you also need to extend your Python with MPI. This is also discussed below.

The Python wrapper for SPPARKS uses the amazing and magical (to me) "ctypes" package in Python, which
auto-generates the interface code needed between Python and a set of C interface routines for a library. Ctypes is
part of standard Python for versions 2.5 and later. You can check which version of Python you have installed, by
simply typing "python" at a shell prompt.

75

https://spparks.github.io
http://www.python.org

9.1 Building SPPARKS as a shared library

Instructions on how to build SPPARKS as a shared library are given in Section_start 5. A shared library is one
that is dynamically loadable, which is what Python requires. On Linux this is a library file that ends in ".so", not
".a".

From the src directory, type

make makeshlib
make -f Makefile.shlib foo

where foo is the machine target name, such as linux or g++ or serial. This should create the file libspparks_foo.so
in the src directory, as well as a soft link libspparks.so, which is what the Python wrapper will load by default.
Note that if you are building multiple machine versions of the shared library, the soft link is always set to the most
recently built version.

If this fails, see Section_start 5 for more details, especially if your SPPARKS build uses auxiliary libraries like
MPI which may not be built as shared libraries on your system.

9.2 Installing the Python wrapper into Python

For Python to invoke SPPARKS, there are 2 files it needs to know about:

python/spparks.py•
src/libspparks.so•

Spparks.py is the Python wrapper on the SPPARKS library interface. Libspparks.so is the shared SPPARKS
library that Python loads, as described above.

You can insure Python can find these files in one of two ways:

set two environment variables•
run the python/install.py script•

If you set the paths to these files as environment variables, you only have to do it once. For the csh or tcsh shells,
add something like this to your ~/.cshrc file, one line for each of the two files:

setenv PYTHONPATH $PYTHONPATH:/home/sjplimp/spparks/python
setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:/home/sjplimp/spparks/src

If you use the python/install.py script, you need to invoke it every time you rebuild SPPARKS (as a shared
library) or make changes to the python/spparks.py file.

You can invoke install.py from the python directory as

% python install.py [libdir] [pydir]

The optional libdir is where to copy the SPPARKS shared library to; the default is /usr/local/lib. The optional
pydir is where to copy the spparks.py file to; the default is the site-packages directory of the version of Python
that is running the install script.

76

Note that libdir must be a location that is in your default LD_LIBRARY_PATH, like /usr/local/lib or /usr/lib. And
pydir must be a location that Python looks in by default for imported modules, like its site-packages dir. If you
want to copy these files to non-standard locations, such as within your own user space, you will need to set your
PYTHONPATH and LD_LIBRARY_PATH environment variables accordingly, as above.

If the install.py script does not allow you to copy files into system directories, prefix the python command with
"sudo". If you do this, make sure that the Python that root runs is the same as the Python you run. E.g. you may
need to do something like

% sudo /usr/local/bin/python install.py [libdir] [pydir]

You can also invoke install.py from the make command in the src directory as

% make install-python

In this mode you cannot append optional arguments. Again, you may need to prefix this with "sudo". In this mode
you cannot control which Python is invoked by root.

Note that if you want Python to be able to load different versions of the SPPARKS shared library (see this section
below), you will need to manually copy files like libspparks_g++.so into the appropriate system directory. This is
not needed if you set the LD_LIBRARY_PATH environment variable as described above.

9.3 Extending Python with MPI to run in parallel

If you wish to run SPPARKS in parallel from Python, you need to extend your Python with an interface to MPI.
This also allows you to make MPI calls directly from Python in your script, if you desire.

There are several Python packages available that purport to wrap MPI as a library and allow MPI functions to be
called from Python.

These include

pyMPI•
maroonmpi•
mpi4py•
myMPI•
Pypar•

All of these except pyMPI work by wrapping the MPI library and exposing (some portion of) its interface to your
Python script. This means Python cannot be used interactively in parallel, since they do not address the issue of
interactive input to multiple instances of Python running on different processors. The one exception is pyMPI,
which alters the Python interpreter to address this issue, and (I believe) creates a new alternate executable (in
place of "python" itself) as a result.

In principle any of these Python/MPI packages should work to invoke SPPARKS in parallel and MPI calls
themselves from a Python script which is itself running in parallel. However, when I downloaded and looked at a
few of them, their documentation was incomplete and I had trouble with their installation. It's not clear if some of
the packages are still being actively developed and supported.

The one I recommend, since I have successfully used it with SPPARKS, is Pypar. Pypar requires the ubiquitous
Numpy package be installed in your Python. After launching python, type

77

http://pympi.sourceforge.net/
http://code.google.com/p/maroonmpi/
http://code.google.com/p/mpi4py/
http://nbcr.sdsc.edu/forum/viewtopic.php?t=89&sid=c997fefc3933bd66204875b436940f16
http://code.google.com/p/pypar
http://numpy.scipy.org

import numpy

to see if it is installed. If not, here is how to install it (version 1.3.0b1 as of April 2009). Unpack the numpy tarball
and from its top-level directory, type

python setup.py build
sudo python setup.py install

The "sudo" is only needed if required to copy Numpy files into your Python distribution's site-packages directory.

To install Pypar (version pypar-2.1.4_94 as of Aug 2012), unpack it and from its "source" directory, type

python setup.py build
sudo python setup.py install

Again, the "sudo" is only needed if required to copy Pypar files into your Python distribution's site-packages
directory.

If you have successully installed Pypar, you should be able to run Python and type

import pypar

without error. You should also be able to run python in parallel on a simple test script

% mpirun -np 4 python test.py

where test.py contains the lines

import pypar
print "Proc %d out of %d procs" % (pypar.rank(),pypar.size())

and see one line of output for each processor you run on.

IMPORTANT NOTE: To use Pypar and SPPARKS in parallel from Python, you must insure both are using the
same version of MPI. If you only have one MPI installed on your system, this is not an issue, but it can be if you
have multiple MPIs. Your SPPARKS build is explicit about which MPI it is using, since you specify the details in
your lo-level src/MAKE/Makefile.foo file. Pypar uses the "mpicc" command to find information about the MPI it
uses to build against. And it tries to load "libmpi.so" from the LD_LIBRARY_PATH. This may or may not find
the MPI library that SPPARKS is using. If you have problems running both Pypar and SPPARKS together, this is
an issue you may need to address, e.g. by moving other MPI installations so that Pypar finds the right one.

9.4 Testing the Python-SPPARKS interface

To test if SPPARKS is callable from Python, launch Python interactively and type:

>>> from spparks import spparks
>>> spk = spparks()

If you get no errors, you're ready to use SPPARKS from Python. If the 2nd command fails, the most common
error to see is

OSError: Could not load SPPARKS dynamic library

78

which means Python was unable to load the SPPARKS shared library. This typically occurs if the system can't
find the SPPARKS shared library or one of the auxiliary shared libraries it depends on, or if something about the
library is incompatible with your Python. The error message should give you an indication of what went wrong.

You can also test the load directly in Python as follows, without first importing from the spparks.py file:

>>> from ctypes import CDLL
>>> CDLL("libspparks.so")

If an error occurs, carefully go thru the steps in Section_start 5 and above about building a shared library and
about insuring Python can find the necessary two files it needs.

Test SPPARKS and Python in serial:

To run a SPPARKS test in serial, type these lines into Python interactively from the examples/ising directory:

>>> from spparks import spparks
>>> spk = spparks()
>>> spk.file("in.ising")

Or put the same lines in the file test.py and run it as

% python test.py

Either way, you should see the results of running the in.ising example on a single processor appear on the screen,
the same as if you had typed something like:

spk_g++ <in.ising

Test SPPARKS and Python in parallel:

To run SPPARKS in parallel, assuming you have installed the Pypar package as discussed above, create a test.py
file containing these lines:

import pypar
from spparks import spparks
spk = spparks()
spk.file("in.ising")
print "Proc %d out of %d procs has" % (pypar.rank(),pypar.size()),spk
pypar.finalize()

You can then run it in parallel as:

% mpirun -np 4 python test.py

and you should see the same output as if you had typed

% mpirun -np 4 spk_g++ <in.ising

Note that if you leave out the 3 lines from test.py that specify Pypar commands you will instantiate and run
SPPARKS independently on each of the P processors specified in the mpirun command. In this case you should
get 4 sets of output, each showing that a SPPARKS run was made on a single processor, instead of one set of
output showing that SPPARKS ran on 4 processors. If the 1-processor outputs occur, it means that Pypar is not
working correctly.

79

http://datamining.anu.edu.au/~ole/pypar

Also note that once you import the PyPar module, Pypar initializes MPI for you, and you can use MPI calls
directly in your Python script, as described in the Pypar documentation. The last line of your Python script should
be pypar.finalize(), to insure MPI is shut down correctly.

Running Python scripts:

Note that any Python script (not just for SPPARKS) can be invoked in one of several ways:

% python foo.script
% python -i foo.script
% foo.script

The last command requires that the first line of the script be something like this:

#!/usr/local/bin/python
#!/usr/local/bin/python -i

where the path points to where you have Python installed, and that you have made the script file executable:

% chmod +x foo.script

Without the "-i" flag, Python will exit when the script finishes. With the "-i" flag, you will be left in the Python
interpreter when the script finishes, so you can type subsequent commands. As mentioned above, you can only
run Python interactively when running Python on a single processor, not in parallel.

9.5 Using SPPARKS from Python

The Python interface to SPPARKS consists of a Python "spparks" module, the source code for which is in
python/spparks.py, which creates a "spparks" object, with a set of methods that can be invoked on that object. The
sample Python code below assumes you have first imported the "spparks" module in your Python script, as
follows:

from spparks import spparks

These are the methods defined by the spparks module. If you look at the file src/library.cpp you will see that they
correspond one-to-one with calls you can make to the SPPARKS library from a C++ or C or Fortran program.

spk = spparks() # create a SPPARKS object using the default libspparks.so library
spk = spparks("g++") # create a SPPARKS object using the libspparks_g++.so library
spk = spparks("",list) # ditto, with command-line args, e.g. list = ["-echo","screen"]
spk = spparks("g++",list)

spk.close() # destroy a SPPARKS object

spk.file(file) # run an entire input script, file = "in.lj"
spk.command(cmd) # invoke a single SPPARKS command, cmd = "run 100.0"

xlo = spk.extract(name,type) # extract a global quantity
 # name = "boxxlo", "nlocal", "id", "xyz", "site", iarray2", "darray1", etc
 # type = 0 = int
 # 1 = int vector
 # 2 = int array
 # 3 = double
 # 4 = double vector

80

 # 5 = double array

eng = spk.energy() # query current energy of system

IMPORTANT NOTE: Currently, the creation of a SPPARKS object from within spparks.py does not take an MPI
communicator as an argument. There should be a way to do this, so that the SPPARKS instance runs on a subset
of processors if desired, but I don't know how to do it from Pypar. So for now, it runs with
MPI_COMM_WORLD, which is all the processors. If someone figures out how to do this with one or more of the
Python wrappers for MPI, like Pypar, please let us know and we will amend these doc pages.

Note that you can create multiple SPPARKS objects in your Python script, and coordinate and run multiple
simulations, e.g.

from spparks import spparks
spk1 = spparks()
spk2 = spparks()
spk1.file("in.file1")
spk2.file("in.file2")

The file() and command() methods allow an input script or single commands to be invoked.

The extract() method returns values or pointers to data structures internal to SPPARKS. See the src/app.cpp file
and its extract() method for a list of what is recognized as "name" arguments. Other values could easily be added.

For example, "boxxlo" returns the lower x-bound of the simulation box. "Nlocal" and "nglobal" return the number
of lattice sites owned by a proc or the total # of lattice sites in the simulation. "Xyz" returns the Nx3 array of
lattice site coordinates. "Site" and "iarrayN" and "darrayN" return a vector of integer or floating-point per-site
values.

As noted above, these Python class methods correspond one-to-one with the functions in the SPPARKS library
interface in src/library.cpp and library.h. This means you can extend the Python wrapper via the following steps:

Add a new interface function to src/library.cpp and src/library.h.•
Rebuild SPPARKS as a shared library.•
Add a wrapper method to python/spparks.py for this interface function.•
You should now be able to invoke the new interface function from a Python script. Isn't ctypes amazing?•

9.6 Example Python scripts that use SPPARKS

These are the Python scripts included as demos in the python/examples directory of the SPPARKS distribution, to
illustrate the kinds of things that are possible when Python wraps SPPARKS. If you create your own scripts, send
them to us and we can include them in the SPPARKS distribution.

trivial.py read/run a SPPARKS input script thru Python
demo.py invoke various SPPARKS library interface routines

See the python/README file for instructions on how to run them and the source code for individual scripts for
comments about what they do.

81

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

2. Getting Started

This section describes how to unpack, make, and run SPPARKS.

2.1 What's in the SPPARKS distribution
2.2 Making SPPARKS
2.3 Making SPPARKS with optional packages
2.4 Building SPPARKS as a library
2.5 Running SPPARKS
2.6 Command-line options
2.7 SPPARKS screen output

2.1 What's in the SPPARKS distribution

When you download SPPARKS you will need to unzip and untar the downloaded file with the following
commands, after placing the tarball in an appropriate directory.

gunzip spparks*.tar.gz
tar xvf spparks*.tar

This will create a spparks directory containing two files and several sub-directories:

README text file
LICENSE the GNU General Public License (GPL)
doc documentation
examples test problems
python Python wrapper
src source files
tools auxiliary tools

2.2 Making SPPARKS

This section has the following sub-sections:

Read this first•
Building a SPPARKS executable•
Common errors that can occur when making SPPARKS•
Editing a new low-level Makefile•
Additional build tips•
Building for a Mac•
Building for Windows•

Read this first:

Building SPPARKS can be non-trivial. You will likely need to edit a makefile, there are compiler options,
additional libraries can be used (MPI, JPEG), etc. Please read this section carefully. If you are not comfortable
with makefiles, or building codes on a Unix platform, or running an MPI job on your machine, please find a local
expert to help you.

82

https://spparks.github.io

Building a SPPARKS executable:

The src directory contains the C++ source and header files for SPPARKS. It also contains a top-level Makefile
and a MAKE sub-directory with low-level Makefile.* files for several machines. From within the src directory,
type "make" or "gmake". You should see a list of available choices. If one of those is the machine and options you
want, say serial or mpi or linux, then type one of the commands:

make serial
make mpi
gmake linux

Try the "serial" and "mpi" targets first, since they are generic and should typically work on any machine,
assuming you have the GNU g++ compiler (for the serial version) and MPI installed (for the mpi version).

Note that on a multi-processor or multi-core platform you can launch a parallel make, by using the "-j" switch
with the make command, which will typically build SPPARKS more quickly.

If you get no errors and an executable like spk_serial or spk_mpi is produced, you're done; it's your lucky day.

IMPORTANT NOTE: You need a C++ compiler that is C++11 compliant to build SPPARKS. Almost all current
C++ compilers are; you just need to use a -std=c++11 flag when compiling, as in the
src/MAKE/Makefile.machine files provided with SPPARKS.

Common errors that can occur when making SPPARKS:

(1) If the make command breaks immediately with errors that indicate it can't find files with a "*" in their names,
this can be because your machine's make doesn't support wildcard expansion in a makefile. Try gmake instead of
make.

(2) Other errors typically occur because the low-level Makefile isn't setup correctly for your machine. If your
platform is named "foo", you need to create a Makefile.foo in the MAKE sub-directory. Use whatever existing
file is closest to your platform as a starting point. See the next section for more instructions.

Editing a new low-level Makefile.foo:

These are the issues you need to address when editing a low-level Makefile for your machine. With a couple
exceptions, the only portion of the file you should need to edit is the "System-specific Settings" section.

(1) Change the first line of Makefile.foo to include the word "foo" and whatever other options you set. This is the
line you will see if you just type "make".

(2) The "compiler/linker settings" section lists compiler and linker settings for your C++ compiler, including path
and optimization flags. You can use g++, the open-source GNU compiler, which is available on all Unix systems.
You can also use mpicc which will typically be available if MPI is installed on your system, though you should
check which actual compiler it wraps. You can also point to a specific compiler; for example see
MAKE/Makefile.spencer.gnu where an environment variable MPI_HOME is used to specify path to mpicxx and
mpicc compilers.

Vendor compilers often produce faster code. On boxes with Intel CPUs, we suggest using the commercial Intel
icc compiler, which can be downloaded from Intel's compiler site.

83

http://www.intel.com/software/products/noncom

If building a C++ code on your machine requires additional libraries, then you should list them as part of the LIB
variable.

The DEPFLAGS setting is what triggers the C++ compiler to create a dependency list for a source file. This
speeds re-compilation when source (*.cpp) or header (*.h) files are edited. Some compilers do not support
dependency file creation, or may use a different switch than -D. GNU g++ works with -D. If your compiler can't
create dependency files (a long list of errors involving *.d files), then you'll need to create a Makefile.foo
patterned after Makefile.storm, which uses different rules that do not involve dependency files.

(3) The "system-specific settings" section has 3 parts.

(3.a) The SPK_INC variable is used to include options that turn on system-dependent ifdefs within the SPPARKS
code. The settings that are currently recogized are:

-DSPPARKS_GZIP•
-DSPPARKS_JPEG•
-DSPPARKS_SMALLBIG•
-DSPPARKS_BIGBIG•
-DSPPARKS_SMALLSMALL•

The read_sites and dump commands will read/write gzipped files if you compile with -DSPPARKS_GZIP. It
requires that your Unix support the "popen" command.

If you use -DSPPARKS_JPEG, the dump image command will be able to write out JPEG image files. If not, it
will only be able to write out text-based PPM image files. For JPEG files, you must also link SPPARKS with a
JPEG library. See section (3.c) below for more details on this.

Use at most one of the -DSPPARKS_SMALLBIG, -DSPPARKS_BIGBIG, -DSPPARKS_SMALLSMALL
settings. The default is -DSPPARKS_SMALLBIG. These settings refer to use of 4-byte (small) vs 8-byte (big)
integers within SPPARKS, as specified in src/spktype.h. The only reason to use the BIGBIG setting is to enable
simulation of systems with more than 2 billion sites. Normally, the only reason to use SMALLSMALL is if your
machine does not support 64-bit integers. See the Additional build tips section below for more details on these
settings.

(3.b) The 3 MPI variables are used to specify an MPI library to build SPPARKS with.

If you want SPPARKS to run in parallel, you must have an MPI library installed on your platform. If you use an
MPI-wrapped compiler, such as "mpicc" to build SPPARKS, you can probably leave these 3 variables blank. If
you do not use "mpicc" as your compiler/linker, then you need to specify where the mpi.h file (MPI_INC) and the
MPI library (MPI_PATH) is found and its name (MPI_LIB).

If you are installing MPI yourself, we recommend Argonne's MPICH 1.2 or 2.0 or OpenMPI. MPICH can be
downloaded from the Argonne MPI site. OpenMPI can be downloaded the OpenMPI site. LAM MPI should also
work. If you are running on a big parallel platform, your system people or the vendor should have already
installed a version of MPI, which will be faster than MPICH or OpenMPI or LAM, so find out how to build and
link with it. If you use MPICH or OpenMPI or LAM, you will have to configure and build it for your platform.
The MPI configure script should have compiler options to enable you to use the same compiler you are using for
the SPPARKS build, which can avoid problems that can arise when linking SPPARKS to the MPI library.

If you just want SPPARKS to run on a single processor, you can use the STUBS library in place of MPI, since
you don't need a true MPI library installed on your system. See the Makefile.serial file for how to specify the 3
MPI variables. You will also need to build the STUBS library for your platform before making SPPARKS itself.

84

http://www-unix.mcs.anl.gov/mpi
http://www.open-mpi.org

From the STUBS dir, type "make" and it will hopefully create a libmpi.a suitable for linking to SPPARKS. If this
build fails, you will need to edit the STUBS/Makefile for your platform.

The file STUBS/mpi.cpp has a CPU timer function MPI_Wtime() that calls gettimeofday() . If your system
doesn't support gettimeofday() , you'll need to insert code to call another timer. Note that the ANSI-standard
function clock() rolls over after an hour or so, and is therefore insufficient for timing long SPPARKS simulations.

(3.c) The 3 JPG variables are used to specify a JPEG library which SPPARKS uses when writing a JPEG file via
the dump image command. These can be left blank if you are not using the -DSPPARKS_JPEG switch discussed
above in section (3.a).

A standard JPEG library usually goes by the name libjpeg.a and has an associated header file jpeglib.h.
Whichever JPEG library you have on your platform, you'll need to set the appropriate JPG_INC, JPG_PATH, and
JPG_LIB variables in Makefile.foo so that the compiler and linker can find it.

That's it. Once you have a correct Makefile.foo and you have pre-built any other libraries it will use (e.g. MPI,
JPEG), all you need to do from the src directory is type one of these 2 commands:

That's it. Once you have a correct Makefile.foo and you have pre-built the MPI library it uses, all you need to do
from the src directory is type one of these 2 commands:

make foo
gmake foo

You should get the executable spk_foo when the build is complete.

Additional build tips:

(1) Building SPPARKS for multiple platforms.

You can make SPPARKS for multiple platforms from the same src directory. Each target creates its own object
sub-directory called Obj_name where it stores the system-specific *.o files.

(2) Cleaning up.

Typing "make clean" will delete all *.o object files created when SPPARKS is built.

(3) Changing the SPPARKS size limits via -DSPPARKS_SMALLBIG or -DSPPARKS_BIGBIG or
-DSPPARKS_SMALLSMALL

As explained above, any of these 3 settings can be specified on the SPK_INC line in your low-level
src/MAKE/Makefile.foo.

The default is -DSPPARKS_SMALLBIG which allows for systems with up to 2^31 sites (about 2 billion). This is
because the site IDs are stored in 32-bit integers.

To allow for larger systems, compile with -DSPPARKS_BIGBIG. This stores site IDs in 64-bit integers. This
enables systems with up to 2^63 sites (about 9e18).

If your system does not support 8-byte integers, you will need to compile with the -DSPPARKS_SMALLSMALL
setting. This will restrict the total number of sites to 2^31 (about 2 billion), as well as store some simulation
statistics in 4-byte integers.

85

Note that in src/lmptype.h there are definitions of all these data types as well as the MPI data types associated
with them. The MPI types need to be consistent with the associated C data types, or else SPPARKS will generate
a run-time error. As far as we know, the settings defined in src/spktype.h are portable and work on every current
system.

In all cases, the size of problem that can be run on a per-processor basis is limited by 4-byte integer storage to
2^31 sites per processor (about 2 billion). This should not normally be a limitation since such a problem would
have a huge per-processor memory and would run very slowly in terms of CPU secs per Monte Carlo interation.

Building for a Mac:

OS X is BSD Unix, so it already works. See the Makefile.mac file.

Building for Windows:

SPPARKS is just C++ with MPI calls, so it should be possible to build it for a Windows box, either using a Linux
installation such as cygwin (see src/MAKE/Makefile.cygwin), or importing the source files into Visual Studio
C++ and building it there. For the latter you are on your own. The SPPARKS developers do not use Windows.
But if you figure out how to do it, or create a Visual Studio project that works, please let us know, and we can
release the instructions/files for how to do this as part of SPPARKS.

2.3 Making SPPARKS with optional packages

The source code for SPPARKS is structured as a large set of core files which are always used, plus optional
packages, which are groups of files that enable a specific set of features. You can see the list of both standard and
user-contributed packages by typing "make package".

Currently there is only one optional package: STITCH. It is dicussed more below.

Any or all packages can be included or excluded when SPPARKS is built. You may wish to exclude certain
packages if you will never run certain kinds of simulations.

By default, SPPARKS includes no packages.

Packages are included or excluded by typing "make yes-name" or "make no-name", where "name" is the name of
the package. You can also type "make yes-all" or "make no-all" to include/exclude all packages. These commands
work by simply moving files back and forth between the main src directory and sub-directories with the package
name, so that the files are seen or not seen when SPPARKS is built. After you have included or excluded a
package, you must re-build SPPARKS.

Additional make options exist to help manage SPPARKS files that exist in both the src directory and in package
sub-directories. You do not normally need to use these commands unless you are editing SPPARKS files or have
downloaded a patch from the SPPARKS WWW site. Typing "make package-update" will overwrite src files with
files from the package directories if the package has been included. It should be used after a patch is installed,
since patches only update the master package version of a file. Typing "make package-overwrite" will overwrite
files in the package directories with src files. Typing "make package-check" will list differences between src and
package versions of the same files.

2.3.1 STITCH package

The STITCH package allows SPPARKS to use the Stitch library for I/O, which is included in the SPPARKS
distribution in lib/stitch. At some point the Stitch library will have its own website and will also be downloadable

86

there.

Stitch is an efficient I/O API and database format with a native python interface. Stitch files can read in to start a
simulation and/or output during a simulation. A novel aspect of stitch is that it enables out-of-core computations
by building a simulation domain analogously to the way an additive manufactured (AM) part is built. It merges
outputs written over time to efficiently construct a much larger simulation domain that would otherwise be
impossible to model in one simulation. Stitching workflows can be created to perform multiple SPPARKS
simulations representing an additive manufacturing process; such simulations can produce huge numbers of lattice
sites representing an entire AM build that would otherwise be impossible to simulate due to length scale and
computational resource limitations. Stitch is intended and primarily focused on microstructural evolution
simulations such as welding and additive manufacturing but other applications may be possible.

Building SPPARKS with the STITCH package enables these commands to use stitch-related options:

dump stitch•
set stitch•
reset_time•

See the am_path and stitch sub-directories in the examples directory for models and scripts which use the Stitch
library.

You can build SPPARKS with stitch support in one of 3 ways.

(1) From the src directory using make

% cd spparks/src
% make lib-stitch args="-b" # build the Stitch library and set links to it
% make yes-stitch # install the STITCH package
% make mpi # or whichever machine target you wish

(2) From the lib directory using Install.py

% cd spparks/lib
% python Install.py -b # build the Stitch library and set links to it
% cd spparks/src
% make yes-stitch # install the STITCH package
% make mpi # or whichever machine target you wish

(3) Manual build of the Stitch library you have downloaded to your system

% cd $STITCHDIR # STITCHDIR = the Stitch library directory
% make # build Stitch with default Makefile
% make -f Makefile.custom # build Stitch with custom Makefile
% cd spparks/lib/stitch
% ln -s $STITCHDIR liblink # set two links in SPPARKS lib/stitch
% ln -s $STITCHDIR includelink
% cd spparks/src
% make yes-stitch # install the STITCH package
% make mpi # or whichever machine target you wish

To un-install the STITCH package from SPPARKS, do the following:

% cd spparks/src
% make no-stitch # un-install the STITCH package files
% make mpi # re-build SPPARKS w/out the STITCH package

87

2.4 Building SPPARKS as a library

SPPARKS can be built as either a static or shared library, which can then be called from another application or a
scripting language. See this section for more info on coupling SPPARKS to other codes. See this section for more
info on wrapping and running SPPARKS from Python.

Static library:

To build SPPARKS as a static library (*.a file on Linux), type

make makelib
make -f Makefile.lib foo

where foo is the machine name. This kind of library is typically used to statically link a driver application to
SPPARKS, so that you can insure all dependencies are satisfied at compile time. Note that inclusion or exclusion
of any desired optional packages should be done before typing "make makelib". The first "make" command will
create a current Makefile.lib with all the file names in your src dir. The second "make" command will use it to
build SPPARKS as a static library, using the ARCHIVE and ARFLAGS settings in src/MAKE/Makefile.foo. The
build will create the file libspparks_foo.a which another application can link to.

Shared library:

To build SPPARKS as a shared library (*.so file on Linux), which can be dynamically loaded, e.g. from Python,
type

make makeshlib
make -f Makefile.shlib foo

where foo is the machine name. This kind of library is required when wrapping SPPARKS with Python; see
Section_python for details. Again, note that inclusion or exclusion of any desired optional packages should be
done before typing "make makelib". The first "make" command will create a current Makefile.shlib with all the
file names in your src dir. The second "make" command will use it to build SPPARKS as a shared library, using
the SHFLAGS and SHLIBFLAGS settings in src/MAKE/Makefile.foo. The build will create the file
libspparks_foo.so which another application can link to dyamically. It will also create a soft link libspparks.so,
which the Python wrapper uses by default.

Note that for a shared library to be usable by a calling program, all the auxiliary libraries it depends on must also
exist as shared libraries. This will be the case for libraries included with SPPARKS, such as the dummy MPI
library in src/STUBS since they are always built as shared libraries with the -fPIC switch. However, if a library
like MPI does not exist as a shared library, the second make command will generate an error. This means you will
need to install a shared library version of the package. The build instructions for the library should tell you how to
do this.

As an example, here is how to build and install the MPICH library, a popular open-source version of MPI,
distributed by Argonne National Labs, as a shared library in the default /usr/local/lib location:

./configure --enable-shared
make
make install

You may need to use "sudo make install" in place of the last line if you do not have write privileges for
/usr/local/lib. The end result should be the file /usr/local/lib/libmpich.so.

88

http://www-unix.mcs.anl.gov/mpi

Additional requirement for using a shared library:

The operating system finds shared libraries to load at run-time using the environment variable
LD_LIBRARY_PATH. So you may wish to copy the file src/libspparks.so or src/libspparks_g++.so (for
example) to a place the system can find it by default, such as /usr/local/lib, or you may wish to add the SPPARKS
src directory to LD_LIBRARY_PATH, so that the current version of the shared library is always available to
programs that use it.

For the csh or tcsh shells, you would add something like this to your ~/.cshrc file:

setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:/home/sjplimp/spparks/src

Calling the SPPARKS library:

Either flavor of library (static or shared0 allows one or more SPPARKS objects to be instantiated from the calling
program.

When used from a C++ program, all of SPPARKS is wrapped in a SPPARKS_NS namespace; you can safely use
any of its classes and methods from within the calling code, as needed.

When used from a C or Fortran program or a scripting language like Python, the library has a simple
function-style interface, provided in src/library.cpp and src/library.h.

See the sample codes in examples/COUPLE/simple for examples of C++ and C and Fortran codes that invoke
SPPARKS thru its library interface. There are other examples as well in the COUPLE directory which are
discussed in Section_howto 2 of the manual. See Section_python of the manual for a description of the Python
wrapper provided with SPPARKS that operates through the SPPARKS library interface.

The files src/library.cpp and library.h define the C-style API for using SPPARKS as a library. See Section_howto
3 of the manual for a description of the interface and how to extend it for your needs.

2.5 Running SPPARKS

By default, SPPARKS runs by reading commands from stdin; e.g. spk_linux < in.file. This means you first create
an input script (e.g. in.file) containing the desired commands. This section describes how input scripts are
structured and what commands they contain.

You can test SPPARKS on any of the sample inputs provided in the examples directory. Input scripts are named
in.* and sample outputs are named log.*.name.P where name is a machine and P is the number of processors it
was run on.

Here is how you might run the Potts model tests on a Linux box, using mpirun to launch a parallel job:

cd src
make linux
cp spk_linux ../examples/lj
cd ../examples/potts
mpirun -np 4 spk_linux <in.potts

The screen output from SPPARKS is described in a section below. As it runs, SPPARKS also writes a log.spparks
file with the same information.

Note that this sequence of commands copies the SPPARKS executable (spk_linux) to the directory with the input
files. This may not be necessary, but some versions of MPI reset the working directory to where the executable is,

89

rather than leave it as the directory where you launch mpirun from (if you launch spk_linux on its own and not
under mpirun). If that happens, SPPARKS will look for additional input files and write its output files to the
executable directory, rather than your working directory, which is probably not what you want.

If SPPARKS encounters errors in the input script or while running a simulation it will print an ERROR message
and stop or a WARNING message and continue. See this section for a discussion of the various kinds of errors
SPPARKS can or can't detect, a list of all ERROR and WARNING messages, and what to do about them.

SPPARKS can run a problem on any number of processors, including a single processor. SPPARKS can run as
large a problem as will fit in the physical memory of one or more processors. If you run out of memory, you must
run on more processors or setup a smaller problem.

2.6 Command-line options

At run time, SPPARKS recognizes several optional command-line switches which may be used in any order. For
example, spk_ibm might be launched as follows:

mpirun -np 16 spk_ibm -var f tmp.out -log my.log -screen none <in.alloy

These are the command-line options:

-echo style

Set the style of command echoing. The style can be none or screen or log or both. Depending on the style, each
command read from the input script will be echoed to the screen and/or logfile. This can be useful to figure out
which line of your script is causing an input error. The default value is log. The echo style can also be set by using
the echo command in the input script itself.

-partition 8x2 4 5 ...

Invoke SPPARKS in multi-partition mode. When SPPARKS is run on P processors and this switch is not used,
SPPARKS runs in one partition, i.e. all P processors run a single simulation. If this switch is used, the P
processors are split into separate partitions and each partition runs its own simulation. The arguments to the
switch specify the number of processors in each partition. Arguments of the form MxN mean M partitions, each
with N processors. Arguments of the form N mean a single partition with N processors. The sum of processors in
all partitions must equal P. Thus the command "-partition 8x2 4 5" has 10 partitions and runs on a total of 25
processors.

The input script specifies what simulation is run on which partition; see the variable and next commands. This
howto section gives examples of how to use these commands in this way. Simulations running on different
partitions can also communicate with each other; see the temper command.

-in file

Specify a file to use as an input script. This is an optional switch when running SPPARKS in one-partition mode.
If it is not specified, SPPARKS reads its input script from stdin - e.g. spk_linux < in.run. This is a required switch
when running SPPARKS in multi-partition mode, since multiple processors cannot all read from stdin.

-log file

Specify a log file for SPPARKS to write status information to. In one-partition mode, if the switch is not used,
SPPARKS writes to the file log.spparks. If this switch is used, SPPARKS writes to the specified file. In
multi-partition mode, if the switch is not used, a log.SPPARKS file is created with hi-level status information.

90

Each partition also writes to a log.SPPARKS.N file where N is the partition ID. If the switch is specified in
multi-partition mode, the hi-level logfile is named "file" and each partition also logs information to a file.N. For
both one-partition and multi-partition mode, if the specified file is "none", then no log files are created. Using a
log command in the input script will override this setting.

-screen file

Specify a file for SPPARKS to write its screen information to. In one-partition mode, if the switch is not used,
SPPARKS writes to the screen. If this switch is used, SPPARKS writes to the specified file instead and you will
see no screen output. In multi-partition mode, if the switch is not used, hi-level status information is written to the
screen. Each partition also writes to a screen.N file where N is the partition ID. If the switch is specified in
multi-partition mode, the hi-level screen dump is named "file" and each partition also writes screen information to
a file.N. For both one-partition and multi-partition mode, if the specified file is "none", then no screen output is
performed.

-var name value

Specify a variable that will be defined for substitution purposes when the input script is read. "Name" is the
variable name which can be a single character (referenced as $x in the input script) or a full string (referenced as
${abc}). The value can be any string. Using this command-line option is equivalent to putting the line "variable
name index value" at the beginning of the input script. Defining a variable as a command-line argument overrides
any setting for the same variable in the input script, since variables cannot be re-defined. See the variable
command for more info on defining variables and this section for more info on using variables in input scripts.

2.7 SPPARKS screen output

As SPPARKS reads an input script, it prints information to both the screen and a log file about significant actions
it takes to setup a simulation. When the simulation is ready to begin, SPPARKS performs various initializations
and prints the amount of memory (in MBytes per processor) that the simulation requires. An example output is
shown here, for the examples/in.potts script run on 4 processors.

SPPARKS (11 Dec 2015)
Created box = (0 0 0) to (20 20 20)
 1 by 2 by 2 processor grid
Creating sites ...
 8000 sites
 8000 sites have 26 neighbors
Setting site values ...
 8000 settings made for site
Setting up run ...
Memory usage per processor = 4.375 Mbytes

During the run itself, statistical information is printed periodically, for every delta of simulation time, as specified
by the stats commmand. When the run concludes, SPPARKS prints final statistical info and a total run time for
the simulation.

 Time Naccept Nreject Nsweeps CPU Energy
 0 0 0 0 0 205912
 10.01 88437 7919563 1001 0.195 72506
 20 94828 15905172 2000 0.379 57038
 30 98345 23901655 3000 0.565 49948
 40 101449 31898551 4000 0.749 44316
 50.01 103978 39904022 5001 0.933 39334
 60.01 105578 47902422 6001 1.12 36902
 70.01 106938 55901062 7001 1.3 34428
 80 108491 63891509 8000 1.49 31668
 90 110211 71889789 9000 1.67 27994

91

 100 112074 79887926 10000 1.86 21894
Loop time of 1.86084 on 4 procs

It then appends statistics about the breakdown of CPU time for the simulation.

Solve time (%) = 1.52001 (81.6842)
Update time (%) = 0 (0)
Comm time (%) = 0.245275 (13.1809)
Outpt time (%) = 0.0892967 (4.79874)
App time (%) = 0 (0)
Other time (%) = 0.00625533 (0.336157)

92

Previous Section - SPPARKS Website - SPPARKS Documentation - SPPARKS Commands - Next Section

7. Additional tools

SPPARKS is designed to be a Monte Carlo (MC) kernel for performing kinetic MC or Metropolis MC
computations. Additional pre- and post-processing steps are often necessary to setup and analyze a simulation.
This section describes additional tools that may be useful.

Users can extend SPPARKS by writing diagnostic classes that perform desired analysis or computations. See this
section for more info.

Our group has written and released a separate toolkit called Pizza.py which provides tools which may be useful
for setup, analysis, plotting, and visualization of SPPARKS simulations. Pizza.py is written in Python and is
available for download from the Pizza.py WWW site.

Addtional scripts below are distributed with spparks under the tools directory.

potts_quaternion/cpp_quaternion.py: enables reading spparks quaternion header files•
potts_quaternion/plot_cubic_symmetry_histograms.py: verification plots for disorientation distribution of
randomly oriented cubic structures

•

potts_quaternion/plot_hcp_symmetry_histograms.py: verification plots for disorientation distribution of
randomly oriented hcp structures

•

93

https://spparks.github.io
https://lammps.github.io/pizza
http://www.python.org
https://lammps.github.io/pizza

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

add_reaction command

Syntax:

add_reaction ID reactant1 reactant2 rate product1 product2 ...

ID = string identifier for the reaction•
reactant1,reactant2 = 0, 1, or 2 reactant species•
rate = reaction rate (see units below)•
product1, product2 = 0, 1, or more product species•

Examples:

add_reaction 1 A B 1.0e10 C
add_reaction Dreact 1.0 d
add_reaction myReact b2 1.0e-10 c3 d4 e3

Description:

This command defines a chemical reaction for use in the app_style chemistry application.

The ID is simply a unique string (alphanumeric characters, dashes, underscores, etc) which helps identify the
reaction in an input script listing.

Each reaction has 0, 1, or 2 reactants. It also has 0, 1, or more products. The reactants and products are specified
by species ID strings, as defined by the add_species command.

The units of the specified rate constant depend on how many reactants participate in the reaction:

0 reactants = rate is molarity/sec•
1 reactant = rate is 1/sec•
2 reactants = rate is 1/molarity-sec•

Thus the first reaction listed above represents an A and B molecule binding to form a complex C at a rate of
1.0e10 per molarity per second. I.e. A + B -> C.

Restrictions:

This command can only be used as part of the app_style chemistry application.

Related commands:

app_style chemistry, add_species

Default: none

94

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

add_species command

Syntax:

add_species name1 name2 ...

name1,name2 = ID strings for different species•

Examples:

add_species kinase
add_species NFkB kinase2 NFkB-IKK

Description:

This command defines the names of one or more chemical species for use in the app_style chemistry application.

Each ID string can be any sequence of non-whitespace characters (alphanumeric, dash, underscore, etc).

Restrictions:

This command can only be used as part of the app_style chemistry application.

Related commands:

app_style chemistry, add_reaction, count

Default: none

95

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

am build command

Syntax:

am build start z num_layers N

start = optional key word•
z = specifies elevation in SPPARKS sites of first layer•
num_layers = optional keyword•
N = specifies number of layers for this build simulation•

Example 1:

am pass 1 dir X speed 9 hatch 75

am cartesian_layer 1 start LL pass_id 1 thickness 10 offset -100. 0.0

am build start 10 num_layers 2

Example 2:

am pass 1 dir X speed 9 hatch 75

am pass 1 dir Y speed 9 hatch 75

am cartesian_layer 1 start LL pass_id 1 thickness 10 offset -100. 0.0

am cartesian_layer 2 start LR pass_id 2 thickness 1 offset 0.0 -100.0

am build start 10 num_layers 4

Description:

This is an optional command used by am/ellipsoid and potts/am/weld applications to specify multilayer build
simulations. The command allows for re-use of layer specifications and implicitly creates a pattern of layers. The
build pattern is implied by the order and number of layers in the input script. As is conventional, the build
proceeds in the z-direction according to specified layer thicknesses. The am build start parameter specifies the top
surface of build plane; its important to specify this parameter if the spparks domain is thicker than a build layer
otherwise the default value will be zhi taken from region box which is probably not desired. Once all layers have
been built/simulated, the pattern repeats, cycling through the layers again and again until num_layers have been
simulated. The am build command allows for defining an arbitrary number of layers and patterns.

This command is mostly intended for SPPARKS simulations that do not use Stitch IO; nonetheless, this command
can be used with Stitch IO. Simulations using Stitch IO would normally proceed layer-by-layer using only one
layer in any particular simulation. If this command is omitted then the pattern of layers in the input script is only
simulated once.

In Example 1, one layer is simulated. Because thickness t=10, am build start z=10 is specified.

In Example 2 above, 2 layers are defined but 4 layers are simulated; layers are alternately rastered in X then Y
directions starting at the LL corner and alternately the LR corner. As in Example 1, because first layer thickness
t=10, the start value is set at am build start z=10.

96

https://spparks.github.io

Restrictions:

This command can only be used as part of the app_style am/ellipsoid app_style potts/am/weld or applications.

Related commands:

am pass, am path, am cartesian_layer am path

Default:

These are the option defaults:

start z = the z-component of the SPPARKS region box•
num_layers = the number of layers in the input script•

97

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

am cartesian_layer command

Syntax:

am cartesian_layer layer_id start location pass_id p_id thickness t offset x,y serpentine switch

layer_id = integer identification number for this cartesian_layer•
start = required keyword•
location = LL or LR or UR or UL•
pass_id = required keyword•
p_id = integer ID of the pass to use for this layer•
thickness = required keyword•
t = thickness in sites of layer•
offset = optional keyword and x,y values•
x,y = optional relative offset (shift) in x-y plane of raster starting position•
serpentine = optional keyword and switch value•
switch = 0 for parallel, 1 for anti-parallel of consecutive scans•

Examples:

Example 1
am pass 1 dir X speed 9 hatch 75
am cartesian_layer 1 start LL pass_id 1 thickness 1 offset -100. 0.0

Example 2
am pass 2 dir Y speed 9 hatch 75
am cartesian_layer 1 start LR pass_id 2 thickness 1 offset 0.0 -100.

Description:

This command is used by am/ellipsoid, and potts/am/weld applications to specify raster patterns on cartesian build
layers. Multiple cartesian_layers can be defined in a single input file, using unique id values.

The start location, references the lower left LL, lower right LR, upper right UR, upper left UL of the rectangular
domain; location must be one of LL,LR,UR,UL. The extent of the rectangular domain created by the raster pattern
is specified elsewhere (region) using region box in the standard way.

The pass_id p_id specified must reference an am pass from earlier in the input script.

The build layer thickness is specified in units of sites.

Specified in units of sites, offset specifies the raster scan starting position relative to start location.

By default, scan patterns are anti-parallel serpentine. To turn off the default scan pattern add the optional switch
serpentine 0.

The initial heading of the scan pattern depends upon start and the value of pass dir (see am pass); also see
examples below.

In the examples, two unique layers are created. offset option is used to extend starting and ending points of pass,
effectively lengthening the pass; although offset consists of x,y values, it is primarily intended to change starting

98

https://spparks.github.io

and ending points along dir, ie only one component of offset is non-zero; although offset defaults to x=0,y=0, if
one of these values must be non-zero, then 0.0 must be given for the other value.

serpentine 0 must be given to turn serpentine off.

Restrictions:

This command can only be used as part of apps am/ellipsoid or potts/am/weld.

Related commands:

am_pass, am_path, am_build

Default:

The defaults are offset x = 0.0, y = 0.0 and serpentine switch = 0.0.

99

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

am pass command

Syntax:

am pass id dir d speed V hatch h overhatch oh

id = integer identification number for this pass•
dir = required keyword•
d = X or Y which specifies direction of the cartesian pass•
speed = required keyword•
V = scan speed of the pass in sites/Monte-Carlo-sweep•
hatch = required keyword•
h = hatch spacing distance•
overhatch = optional keyword•
oh = perpindicular distance to pass dir; expands domain size•

Examples:

am pass 1 dir X speed 9 hatch 75
am pass 2 dir Y speed 10 hatch 50 overhatch 25

Description:

This command is used by am/ellipsoid, and potts/am_weld to specify raster scan patterns for rectangular domains.
Multiple passes can be defined in a single input file, each using unique id values. The am pass command is a
required subelement of am cartesian_layer that specifies a cartesian build layer in the x,y plane. The initial
heading, left or right for dir=X or up or down for dir=Y depends upon the starting location specified in the am
cartesian_layer command. By default, scan lines are serpentine but this can be turned off in the am cartesian_layer
command.

The pass distance and number of hatch lines are controlled by the X,Y extent of the domain specified using the
region command, which must be a box; multiple passes, seperated by hatch spacing are invoked until the domain
dimension perpindicular to the scan dir is exhausted. The optional overhatch value can be used to cause additional
scan lines. The melt pool has its own local coordinate system x,y so that the pool axis x is always oriented along
dir d.

The example commands above define two passes, each with a different dir, speed, hatch and optional overhatch.

100

https://spparks.github.io

Restrictions:

This rastering command can be used with app_style potts/am/weld or app_style am/ellipsoid.

Related commands:

am_cartesian_layer

Default:

The default for overhatch = 0.0.

101

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

am path command

Syntax:

am path id start x0 y0 end x1 y1 speed V

id = integer identification number for this path•
start = required keyword•
x0 y0 = starting point x-y plane for straight line path•
end = required keyword•
x1 y1 = end point x-y plane for straight line path•
speed = required keyword•
V = scan speed of the pass in sites/Monte-Carlo-sweep•

Example

This snippet is taken from SPPARKS repository: examples/am_path/path_raster_a

Convenience; define set of points to be used in path commands
variable X0 equal 0.0
variable Y0 equal 0.0
variable X1 equal 500.0
variable Y1 equal 500.0
variable X2 equal 106.1
variable Y2 equal 0.0
variable X3 equal 500.0
variable Y3 equal 393.9

am path 1 start $X0 $Y0 end $X1 $Y1 speed 9
am path 2 start $X3 $Y3 end $X2 $Y2 speed 9
am path_layer 1 num_paths 2 path_ids 1 2 thickness 1

Description:

This command is used by am/ellipsoid, and potts/am_weld to specify raster scans in a very general way. This am
path command specifies a line in the x-y plane using start x,y and end x,y points; path scan speed V is also part of
the specification. Any number of am paths can be specified in a script; an am path can be associated with multiple
am path_layers. The direction of travel is implied by starting and ending points.

The example commands above define two paths both each of which are associated with am path_layer 1. See
depiction of simulation below.

102

https://spparks.github.io

Restrictions:

This rastering command can be used with app_style potts/am/weld or app_style am/ellipsoid.

Related commands:

The am path is a required element of am_path_layer

Default: none

103

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

am path_layer command

Syntax:

am path_layer layer_id num_paths N path_ids (tuple paths_ids) thickness t

layer_id = integer identification number for this path_layer•
num_paths = required keyword•
N = integer number of paths specified on this layer•
path_ids = required keyword•
(tuple path_ids) = tuple array of path_ids corresponding am path specifications elsewhere in script•
thickness = required keyword•
t = thickness in sites of layer•

Examples

variable X0 equal 0.0
variable Y0 equal 0.0
variable X1 equal 500.0
variable Y1 equal 500.0
variable X2 equal 106.1
variable Y2 equal 0.0
variable X3 equal 500.0
variable Y3 equal 393.9
am path 1 start $X0 $Y0 end $X1 $Y1 speed 9
am path 2 start $X3 $Y3 end $X2 $Y2 speed 9
am path_layer 1 num_paths 2 path_ids 1 2 thickness 1

Description:

This command is used by am/ellipsoid, and potts/am/weld applications to specify raster patterns on path build
layers. Multiple path_layers can be defined in a single input file, using unique id values. Although simple build
simulations can be conducted using this command by manually writing scripts that use am path_layer, it is
expected that this command will generally be automatically created for the purpose of handling more complex
geometries.

The num_paths and path_ids keywords are used to create the layer with thickness t. The build layer thickness is
specified in units of sites.

In example above, two unique am paths are created; these paths are referenced in the am path_layer command.
This example is also illustrated for am_path,

104

https://spparks.github.io

Restrictions:

This command can only be used as part of apps am/ellipsoid or potts/am/weld applications.

Related commands:

am_pass, am_path, am_build

Default: none

105

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

am pathgen command

Syntax:

am pathgen outfile "filename" num_layers "N" zstart "Z" width_haz "H" melt_depth D depth_haz

outfile = required keyword•
filename = name of output file containing CV and raster path information•
num_layers = required keyword•
N = number of layers paths are generated for•
zstart = required keyword•
Z = starting elevation of build•
width_haz = required keyword•
H = width of heat effected zone; always greater than pool width•
melt_depth = required keyword•
D = melt depth; generally greater than layer thickness and smaller than 2 layers thick•
depth_haz = required keyword•
DH = depth of heat effected zone; always greater than melt_depth•

Examples:

Taken from examples/stitch/stitching_rectangular_domain.

###################################
Variables defined for convenience
WIDTH_HAZ
variable WIDTH_HAZ equal 13
#
MELT_DEPTH
variable MELT_DEPTH equal 4
#
DEPTH_HAZ
variable DEPTH_HAZ equal 5
#
V: scan speed
variable V equal 14.0
#
HATCH: hatch spacing
variable HATCH equal 5.0
#
LAYER_THICKNESS:
variable LAYER_THICKNESS equal 3
#
OUT: output filename
variable OUT world pathgen.dat
###################################

##
This example uses the following larger intended domain
region box block 0 100 0 280 0 48

###
Additional commands defining hatch pattern, cartesian layers, etc
am pass 1 dir X speed $V hatch $HATCH
am pass 2 dir Y speed $V hatch $HATCH

106

https://spparks.github.io

am cartesian_layer 1 start LL pass_id 1 thickness $LAYER_THICKNESS offset -80.0 0.0 serpentine 1
am cartesian_layer 2 start UL pass_id 2 thickness $LAYER_THICKNESS offset 0.0 80.0 serpentine 1
am cartesian_layer 3 start UR pass_id 1 thickness $LAYER_THICKNESS offset 80.0 0.0 serpentine 1
am cartesian_layer 4 start LR pass_id 2 thickness $LAYER_THICKNESS offset 0.0 -80.0 serpentine 1

Example 1:
pathgen outfile $OUT num_layers 6 zstart 0 width_haz $WIDTH_HAZ melt_depth $MELT_DEPTH depth_haz $DEPTH_HAZ

Description:

This command is used by potts/am/path/gen for auto generation of path information on rectangular layers. Output
from this command can be used to assemble very large simulations of AM microstructures using a sequence of
significantly smaller simulations. The sequence of smaller simulations are conducted on a series of CVs
calculated using SPPARKS on the basis of the larger intended domain size as specified using the standard region
command.

The outfile parameter specifies name of file where path information is written. This file is subsequently read line
by line using a python or bash script to orchestrate the ordered series of smaller simulations.

num_layers parameter specifies how many layers output path information will be generated for. This parameter
allows for re-use of layer specifications and implicitly creates a pattern of layers. The build pattern is implied by
the order and number of layers in the input script; if num_layers is greater than number of cartesian layers
provided in script then the input cartesian layers are used as a pattern repeated as necessary to create number of
layers. Once path information has been generated for all layers specified, the pattern repeats, cycling through the
layers again and again until num_layers have been processed.

As is conventional, the build proceeds in the z-direction according to specified layer thicknesses. The zstart
parameter specifies starting z elevation of build plane surface.

On the basis of specified am pass and heat effected zone parameters, a sequence of computational volumes (CV)
are created. The width_haz parameter sizes the width of the CV; the length of the CV is collected from am pass
and domain size information while depth of the CV is specified with the depth_haz parameter. Microstructure
simulations are conducted on the smaller incremental sequence of CVs. The depth_haz parameter only makes
sense when its greater than melt_depth. The melt_depth parameter is not used directly by the path generator but is
passed on to the AM model for simulating microstructures; for convenience it is included here to allow for
parametric studies on melt_depth and depth_haz.

Restrictions:

This command is only used by the potts/am/path/gen app in conjunction with the region, create_box, am pass, and
am cartesian_layer, commands. If the am pathgen command is missing, the potts/am/path/gen app will run but
path information will not be generated.

Related commands:

potts/am/path/gen region create_box am_pass am_cartesian_layer

Default:

None

107

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style am/ellipsoid command

Syntax:

app_style am/ellipsoid nspins spot_width melt_tail_length melt_depth cap_height HAZ tail_HAZ depth_HAZ cap_HAZ exp_factor

am/ellipsoid = application style name•
nspins = number of possible spins•
spot_width = maximum width of the melt pool•
melt_tail_length = maximum length of the melt pool trailing the melt spot•
melt_depth = maximum depth of the melt pool•
cap_height = maximum length of the melt pool leading the melt spot•
HAZ = width of the heat affected zone (haz) surrounding the melt pool (must be larger than width)•
tail_HAZ = Length of the haz trailing the meltpool (must be larger than tail_length)•
depth_HAZ = depth of the heat affect zone (haz) below the melt pool (must be larger than depth)•
cap_HAZ = Length of haz leading the melt pool (must be larger than cap_length)•
exp_factor = Coefficient that controls the rate of exponential decay of the haz mobility gradient

Examples:

app_style am/ellipsoid 1000 30 40 20 5 50 60 30 7 0.1

Description:

This is an on-lattice application derived from the app_style potts/neighonly application that simulates the
rastering of a molten pool and its accompanying heat-affected zone (HAZ) through a domain. Rastering is
achieved through the specification of layer-by-layer patterns, which can be combined into an overall pattern
specifying the translation of the molten zone through the entire simulation domain. The application allows for
arbitrary numbers of paths in each layer and an arbitrary number of layers in each pattern. Thus, the user can
construct any scan strategy desired by specifying individual layer patterns and how these patterns should be
repeated.

The molten pool is defined as a double ellipsoid. The ellipsoids share identical values for two of their axes
(defined by the melt_width and melt_depth parameters). The third axis of each ellipsoid is defined by either the
melt_tail_length or cap_height parameters. The haz is also defined by four equivalent parameters: HAZ,
tail_HAZ, depth_HAZ, and cap_HAZ. A schematic of these eight parameters is shown below.

•

108

https://spparks.github.io

The model also requires specification of the exp_factor variable, which determines the value of the coefficient
in the mobility equation, M = exp(-exp_factor * x), where x is the shortest distance from the lattice site to the
molten pool boundary.

This application was used in the paper by Rodgers and collaborators.

The following additional commands are typically used by this application. A layer must be defined by using am
cartesian_layer or am path_layer. A layer requires one to many am path commands or at least one am pass
command.

am pass: Specify pass parameters used to construct cartesian_layer.•
am path: Specify arbitrary paths via start/end points on a layer; sequence of am paths are used to
construct an am path_layer.

•

am cartesian_layer: A scan pattern on rectangular layer constructed from am pass and other parameters.•
am build: May be used for combinations of layers that comprise a pattern.•

The examples/potts_additive directory has input files which illustrate use of these additional commands.

Restrictions:

This application is only compatible with square and square cubic lattices.

This application can only be evolved by a rejection KMC (rKMC) algorithm. See the sweep command for more
details.

The settings for melt pool width + haz must be <= xhi & yhi.

Related commands:

109

app_style potts/weld, app_style potts/weld/jom

Default: none

(Rodgers) T.M. Rodgers, J.D. Madison and V. Tikare, "Simulation of Metal Additive Manufacturing
Microstructures Using Kinetic Monte Carlo", Computational Materials Science (2017).

110

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style chemistry command

Syntax:

app_style chemistry

chemistry = application style name•

Examples:

app_style chemistry

Description:

This is a general application which evolves a set of coupled chemical reactions stochastically, producing a time
trace of species concentrations. Chemical species are treated as counts of individual molecules reacting within a
reaction volume in a well-mixed fashion. Individual reactions are chosen via the direct method variant of the
Stochastic Simulation Algorithm (SSA) of (Gillespie).

A prototypical example is to use this model to simulate the execution of a protein signaling network in a
biological cell.

This application can only be evolved using a kinetic Monte Carlo (KMC) algorithm. You must thus define a KMC
solver to be used with the application via the solve_style command

The following additional commands are defined by this application:

add_reaction define a chemical reaction
add_species define a chemical species
count specify molecular count of a species
volume specify volume of the chemical reactor

Restrictions: none

Related commands: none

Default: none

(Gillepsie) Gillespie, J Chem Phys, 22, 403-434 (1976); Gillespie, J Phys Chem, 81, 2340-2361 (1977).

111

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style diffusion command

Syntax:

app_style diffusion estyle dstyle args

diffusion = application style name•
estyle = off or linear or nonlinear•
dstyle = hop or schwoebel

hop args = none
schwoebel args = Nmax Nmin

 Nmax = max # of neighbors the initial Schwoebel site can have
 Nmin = min # of neighbors the final Schwoebel site can have

•

Examples:

app_style diffusion linear hop
app_style diffusion nonlinear schwoebel 5 2

Description:

This is an on-lattice application which performs diffusive hops on a lattice whose sites are partially occupied and
partially unoccupied (vacancies). It can be used to model surface diffusion or bulk diffusion on 2d or 3d lattices. It
is equivalent to a 2-state Ising model performing Kawasaki dynamics where neighboring sites exchange their
spins as the model evolves. Each lattice site stores a value which is 1 for vacant or 2 for occupied or 3 for vacant
and a non-deposition site. See the deposition command for more details on the value = 3 sites.

Note that this application only allows for a single diffusing species (site value = 1) if run with an atomic-scale
lattice, or a single phase if run with a coarse-grained lattice. See the app_style diffusion/multiphase command
which allows for multiple diffusing species or phases.

The estyle setting determines how energy is used in computing the probability of hop events, which is related to
the Hamiltonian for the system.

The Hamiltonian representing the energy of an occupied site I for the off style is 0, which simply means energy is
not used in determining the hop probabilities. Instead, see the barrier command.

The Hamiltonian representing the energy of an occupied site I for the linear style is as follows:

Hi = Sum_j delta_ij

where Sum_j is a sum over all the neighbor sites of site I and delta_ij is 0 if site J is occupied and 1 if site J is
vacant. The Hi for a vacant site is 0.

The Hamiltonian representing the energy of an occupied site I for the nonlinear style is as follows:

Hi = Eng(Sum_j delta_ij)

where Sum_j is the sum over all its neighbor sites and delta_ij now 1 if site J is occupied and 0 otherwise. Thus
the summation computes the coordination number of site I. Note that this definition of delta is the opposite of how
it is defined for estyle linear. The function Eng() is a tabulated function with values specified via the ecoord

112

https://spparks.github.io

command. This effectively allows the energy to be a non-linear function of coordination number. As before the Hi
for a vacant site is 0.

For all these estyle settings, the energy of the entire system is the sum of Hi over all sites.

The dstyle setting determines what kind of diffusive hops are modeled. For hop, only simple nearest-neighbor
hops occur where an atom hops to a neighboring vacant site. For schwoebel, Schwoebel hops can also occur,
which are defined in the following way. An atom I can hop to a 2nd neighbor vacant site K if there are two
intermediate 1st neighbor sites J1 and J2, where J1 is vacant and J2 is occupied, and J1 and J2 are neighbors of
each other. Additionaly the initial site I can have no more the Nmax occupied neighbors (its coordination
number), and the destination site K can have no fewer than Nmin neighbors.

The deposition command can be used with this application to add atoms to the system in competition with hop
events.

IMPORTANT NOTE: If you have a free surface you are depositing onto, it may also be possible for atoms to
diffuse away from this surface, i.e. desorb into a vacuum. This application does not do anything special with those
atoms (e.g. remove them), so they may clump together or induce deposition to take place onto the clumps above
the surface. If you wish to prevent this you should insure that desorption is an energetically unfavorable event.

The barrier command can be used with this application to add an energy barrier to the model for nearest-neighbor
hop and Schwoebel hop events, as discussed below.

The ecoord command can be used with the nonlinear version of this application to set tabulated values for the
Hamiltonian Eng() function as described above.

Note that estyle nonlinear should give the same answer as estyle linear if the tabulated function specified by the
ecoord command is specified as E_0 = N, E_1 = N-1, ... E_N-1 = 1, E_N = 0, where N = the number of neighbors
of each lattice site, i.e. the maximum coordination number. In this scenario, the energy is effectively a linear
function of coordination number.

This application performs Kawasaki dynamics, in that the "spins" on two neighboring sites are swapped, where
spin can be thought of as a flag representing occupied or vacant. Equivalently, an atom hops from an occupied site
to a vacancy site.

As explained on this page, this application can be evolved by either a kinetic Monte Carlo (KMC) or rejection
KMC (rKMC) algorithm. You must thus define a KMC solver or sweeping method to be used with the application
via the solve_style or sweep commands. The linear estyle supports both KMC and rKMC options. The other
estyles only support KMC options. If the deposition command is used, then only KMC options are supported.

For solution by a KMC algorithm, the possible events an occupied site can perform are swaps with vacant
neighbor sites. The probability of each such event depends on several variables: the estyle setting, whether the
barrier command is used, whether the hop is downhill or uphill in energy, and whether the temperature is 0.0 or
finite. The following table gives the hop probability for each possible combination of these variables.

Energy Barrier Direction Temperature Probability
no no N/A either 1
no yes N/A 0.0 0
no yes N/A finite exp(-Q/kT)
yes no down either 1
yes no up 0.0 0

113

yes no up finite exp(-dE/kT)
yes yes down 0.0 0
yes yes down finite exp(-Q/kT)
yes yes up 0.0 0
yes yes up finite exp((-dE-Q)/kT)

If estyle is set to off, then energy is "no" in the table. Any other estyle setting is energy = "yes". Barrier is "no" in
the table if the "barrier" command is not used, else it is "yes" in the table. The direction of energy change
(downhill versus uphill) is only relevant if energy is "yes", else it is N/A. The "either" entry for temperature
means 0.0 or finite.

The value dE = Efinal - Einitial refers to the energy change in the system due to the hop. For estyle linear this can
be computed from just the sites I,J. For estyle nonlinear the energy of the neighbors of both sites I,J must also be
computed.

For solution by a Metropolis algorithm, the hop event is performed or not if the probability in the table is 1 or 0.
For intermediate values, a uniform random number R between 0 and 1 is generated and the hop event is accepted
if R < probability in the table.

The following additional commands are defined by this application. The ecoord command can only be used with
the nonlinear energy style.

barrier define energy barriers for hop events
deposition define deposition events
ecoord specify site energy as a function of coordination number
temperature set Monte Carlo temperature

Restrictions: none

Related commands:

app_style ising, app_style diffusion/multiphase

Default: none

114

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style diffusion/multiphase command

Syntax:

app_style diffusion/multiphase

Examples:

app_style diffusion/multiphase
diffusion/multiphase pin 1 # after creating sites
diffusion/multiphase phase 2
diffusion/multiphase phase 3
diffusion/multiphase weight 0.5 pair 2 3

Description:

This is an on-lattice application which is a multi-species or multiphase extension to the single species or single
phase diffusion app. If run with an atomic scale lattice, then this app allows definition of multiple atomic species
via the diffusion/multiphase command it defines. Likewise if run with a coarse-grained lattice, it allows definition
of multiple phases. The rest of this doc page uses the "phase" terminology.

In general, diffusion can lead to phase separation when bond energies (energy of a pair of neighboring sites)
between like phases are lower than bond energies between different phases. The rate of phase separation and the
degree to which it occurs can be controlled by setting the relative bond energies between different phases.

For this app, each site has a phase value which is a value >= 1. There can be an arbitrary number of phases. Note
that if you want vacancies included in the model, they are specified as a distinct phase, just as Al or Cu atoms
would be individual phases in an atomic-scale model.

As illustrated in the example above, the diffusion/multiphase command is used with this application. Every
numeric phase (unique site value) must be set to either "phase" or "pin". The "phase" keyword should be used if
the phase is mobile (it diffuses). The "pin" keyword should be used if it is immobile. The "weight" keyword is
used to define a pairwise energy between pairs of neighbor phases in the energy Hamiltonian for the model:

Hi = Sum_j weight_ij

where Sum_j is a sum over all the neighbor sites of site I and weight_ij is the pairwise energy for the phases of
site I and J. Only pairs of unlike phases can be assigned a weight. Pairs of like phases do not contribute to the site
energy. See the diffusion/multiphase command for details.

Note that this equation means this app is effectively limited to the energy style linear option of the app_style
diffusion command.

Also note that there should always be two or more non-pinned phases in your model. Otherwise no diffusive
exchanges between sites with different phases will take place.

To run this application, an initial phase distribution on the lattice should be specified. Each lattice site has an
integer value which stores its phase label. If only relative volume fractions of the phases is desired, the set
command can be used to set values. If there is structure to the initial phase distribution, this can be written to a
SPPARKS input file and read via the read_sites command; or, the set stitch command can be used to read phase
distribution from a Stitch file formatted by the Stitch library included with SPPARKS.

115

https://spparks.github.io

The examples/diffusion_multiphase directory has several scripts which illusrate use of this app; example scripts
also demonstrate initializing phase distributions.

in.pin_filler•
in.pairwise_weighs•
in.variable_volume_fraction•

The following additional command is defined by this application.

diffusion/multiphase define phases and weights

Restrictions: none

Related commands:

diffusion/multiphase, app_style diffusion

Default: none

116

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style erbium command

Syntax:

app_style erbium

erbium = style name of this application•

Examples:

app_style erbium

Description:

This application simulates a model of reaction and diffusion on a specialized Erbium lattice, which consists of an
fcc lattice for the Erbium and additional tetrahedral and octahedral interstitial sites.

This application stores 2 integers per lattice site. The first integer (i1) is the "type" of the site:

type = 1 = fcc•
type = 2 = octahedral•
type = 3 = tetrahedral•

The second integer (i2) is the element on the site:

element = 1 = erbium•
element = 2 = hydrogen•
element = 3 = helium•
element = 4 = vacancy•

The 3-fold lattice should be created using the lattice fcc/octa/tetra command, which gives details of its geometry
and neighbor connectivity.

The 3-fold lattice should normally be initialized in the following way, using the set command. All fcc sites are for
erbium atoms and are fully occupied. All octahedral sites are initially vacant. A fraction of the tetrahedral sites is
initialized with hydrogen atoms; the remainder are vacant.

The event command is used to define what kinds of diffusive hops and reaction events occur in the model. These
can include correlated hops where a central site coordinates a change at two of its neighbor sites. Reaction events
that transmute a Hydrogen atom to a Helium are also possible.

As explained on this page, this application can be evolved only by a kinetic Monte Carlo (KMC). You must thus
define a KMC solver to be used with the application via the solve_style command.

For solution by a KMC algorithm, the list of events that can occur at each site is determined by its current
neighbors and by the events specified via the event command. The relative probability of each event occurring is
computed as a function of the rate or energy value specified in the event command and the temperature specified
via the temperature command. The details are explained in the doc page for the event command.

The following additional commands are defined by this application.

117

https://spparks.github.io

event definition of an event on the 3-fold lattice
temperature set Monte Carlo temperature

Restrictions: none

Related commands:

diag_style erbium

Default: none

118

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style ising command

app_style ising/single command

Syntax:

app_style style

style = ising or ising/single•

Examples:

app_style ising
app_style ising/single

Description:

These are on-lattice applications which evolve a 2-state Ising model, where each lattice site has a spin of 1 or 2.
Sites flip their spin as the model evolves.

The Hamiltonian representing the energy of site I is as follows:

Hi = Sum_j delta_ij

where Sum_j is a sum over all the neighbor sites of site I and delta_ij is 0 if the spin of sites I and J are the same
and 1 if they are different. The energy of the entire system is the sum of Hi over all sites.

This application performs Glauber dynamics, meaning the spin is flipped on a single site. See app_style diffusion
for an Ising model which performs Kawasaki dynamics, meaning the spins on two neighboring sites are swapped.

As explained on this page, this application can be evolved by either a kinetic Monte Carlo (KMC) or rejection
KMC (rKMC) algorithm. You must thus define a KMC solver or sweeping method to be used with the application
via the solve_style or sweep commands.

For solution by a KMC algorithm, a site event is a spin flip and its probability is min[1,exp(-dE/kT)], where dE =
Efinal - Einitial using the Hamiltonian defined above for the energy of the site, and T is the temperature of the
system defined by the temperature command (which includes the Boltzmann constant k implicitly).

For solution by a rKMC algorithm, the ising and ising/single styles use a different rejection-based algorithm. For
the ising style, the spin is set randomly to 1 or 2. For the ising/single style, the spin is flipped to its opposite value.
In either case, dE = Efinal - Einitial is calculated, as is a uniform random number R between 0 and 1. The new
state is accepted if R < min[1,exp(-dE/kT)].

The following additional commands are defined by this application:

temperature set Monte Carlo temperature

Restrictions: none

Related commands:

119

https://spparks.github.io

app_style potts

Default: none

120

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style membrane command

Syntax:

app_style membrane w01 w11 mu

membrane = style name of this application•
w01 = sovent-protein interaction energy (typically 1.25)•
w11 = sovent-solvent interaction energy (typically 1.0)•
mu = chemical potential to insert a solvent (typically -2.0)•

Examples:

app_style membrane 1.25 1.0 -3.0

Description:

This is an on-lattice application which evolves a membrane model, where each lattice site is in one of 3 states:
lipid, water, or protein. Sites flip their state as the model evolves. See the paper of (Sarkisov) for a description of
the model and its applications to porous media. Here it is used to model the state of a lipid membrane around
embedded proteins, such as one enclosing a biological cell.

In the model, protein sites are defined by the inclusion command and never change. The remaining sites are
initially lipid and can flip between solvent and lipid as the model evolves. Typically, water will coat the surface of
the proteins and create a pore in between multiple proteins if they are close enough together.

The Hamiltonian represeting the energy of site I is as follows:

H = - mu x_i - Sum_j (w11 a_ij + w01 b_ij)

where Sum_j is a sum over all the neighbor sites of site I, x_i = 1 if site I is solvent and 0 otherwise, a_ij = 1 if
both the I,J sites are solvent and 0 otherwise, b_ij = 1 if one of the I,J sites is solvent and the other is protein and 0
otherwise. Mu and w11 and w01 are user inputs. As discussed in the paper, this is essentially a lattice gas
grand-canonical Monte Carlo model, which is isomorphic to an Ising model. The mu term is a penalty for
inserting solvent which prevents the system from becoming all solvent, which the 2nd term would prefer.

As explained on this page, this application can be evolved by either a kinetic Monte Carlo (KMC) or rejection
KMC (rKMC) algorithm. You must thus define a KMC solver or sweeping method to be used with the application
via the solve_style or sweep commands.

For solution by a KMC algorithm, a site event is a spin flip from a lipid to fluid state or vice versa. The
probability of the event is min[1,exp(-dE/kT)], where dE = Efinal - Einitial using the Hamiltonian defined above
for the energy of the site, and T is the temperature of the system defined by the temperature command (which
includes the Boltzmann constant k implicitly).

For solution by a Metropolis algorithm, the site is set randomly to fluid or lipid, unless it is a protein site in which
case it is skipped altogether. The energy change dE = Efinal - Einitial is calculated, as is a uniform random
number R between 0 and 1. The new state is accepted if R < min[1,exp(-dE/kT)], else it is rejected.

The following additional commands are defined by these applications:

121

https://spparks.github.io

inclusion specify which sites are proteins
temperature set Monte Carlo temperature

Restrictions: none

Related commands: none

Default: none

(Sarkisov) Sarkisov and Monson, Phys Rev E, 65, 011202 (2001).

122

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style phasefield/potts command

Syntax:

app_style phasefield/potts Q PFsteps lambda M_C KappaC a C1 C2 C3 C4 keyword value ...

phasefield/potts = application style name•
Q = number of spin states•
PFsteps = number of phase field iterations per KMC/rMC iteration•
lambda = concetration free energy parameter•
M_C = Cahn-Hilliard mobility parameter•
KappaC = Cahn-Hilliard interfacial energy parameter•
a = bulk free energy parameter•
C1 = bulk free energy parameter•
C2 = bulk free energy parameter•
C3 = bulk free energy parameter•
C4 = bulk free energy parameter•
zero or more keyword/value pairs may be appended•
keyword = reset_phasefield or print_connectivity or initialize_values or enforce_concentration_limits

reset_phasefield value = yes or no
 if yes, enforce concentration boundary conditions: C(xlo) = 0, C(xhi) = 1.0

print_connectivity value = yes or no
 if yes, print the neighborlist indices in the finite difference stencil

initialize_values value = yes or no
 if yes, initializes phases with equilibrium concentration dE/dC = 0

enforce_concentration_limits value = yes or no
 if yes, constrain site concentrations to the physical range of [0,1]

•

Examples:

app_style phasefield/potts 200 10 0.3 1 1 0.5 0.25 0.75 0.05 0.95
app_style phasefield/potts 200 10 0.3 1 1 0.5 0.25 0.75 0.05 0.95 &
 reset_phasefield yes &
 print_connectivity yes &
 initialize_values yes &
 enforce_concentration_limits yes

Description:

This is an on-lattice application which evolves a Q-state Potts model in combination with a phase field
Cahn-Hilliard model. It can be used to efficiently simulate grain growth in a two-phase system controlled by
diffusion. For a full description of the model, see the paper by Homer et al..

See the examples/potts_pfm directory for an example script using this command. See the Pictures web page for
images of simulations performed with this command.

The following additional commands are defined by this application:

temperature set Monte Carlo temperature

Restrictions: none

123

https://spparks.github.io
https://spparks.github.io/pictures.html

Related commands:

app_style potts

Default:

The keyword defaults are reset_phasefield = no, print_connectivity = no, initialize_values = no,
enforce_concentration_limits = no.

(Homer) Homer, Tikare, Holm, Computational Materials Science, 69, 414-423 (2013).

124

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style potts command

app_style potts/neigh command

app_style potts/neighonly command

Syntax:

app_style style Q

style = potts or potts/neigh or potts/neighonly•
Q = number of spin states•

Examples:

app_style potts 100
app_style potts/neigh 20

Description:

These are on-lattice applications which evolve a Q-state Ising model or Potts model, where each lattice site has a
spin value from 1 to Q. Sites flip their spin as the model evolves.

The Hamiltonian representing the energy of site I is as follows:

Hi = Sum_j delta_ij

where Sum_j is a sum over all the neighbor sites of site I and delta_ij is 0 if the spin of sites I and J are the same
and 1 if they are different. The energy of the entire system is the sum of Hi over all sites.

These applications perform Glauber dynamics, meaning the spin is flipped on a single site. See app_style
diffusion for an Ising model which performs Kawasaki dynamics, meaning the spins on two neighboring sites are
swapped.

As explained on this page, these applications can be evolved by either a kinetic Monte Carlo (KMC) or rejection
KMC (rKMC) algorithm. You must thus define a KMC solver or sweeping method to be used with the application
via the solve_style or sweep commands.

For solution by a KMC algorithm, a site event is a spin flip and its probability is min[1,exp(-dE/kT)], where dE =
Efinal - Einitial using the Hamiltonian defined above for the energy of the site, and T is the temperature of the
system defined by the temperature command (which includes the Boltzmann constant k implicitly). The KMC
algorithm does not allow spin flips known as "wild" flips, even at finite temperature. These are flips to values that
are not equal to any neighbor site value.

For solution by a rKMC algorithm, the various styles use different rejection-based algorithms. For the potts style,
a random spin from 1 to Q is chosen. For the potts/neigh style, a spin is chosen randomly from the values held by
neighbor sites and a null-bin of a size which extends the possible events up to the maximum number of neighbors.
For example, imagine a site has 12 neighbors and the 12 sites have 4 different spin values. Then each of the 4
neighbor spin values will be chosen with 1/12 probability and the null bin will be chosen with 8/12 probability.
For the potts/neighonly style, the null bin is discarded, so in this case each of the 4 spin values will be chosen with

125

https://spparks.github.io

1/4 probability. In all the cases, dE = Efinal - Einitial is calculated, as is a uniform random number R between 0
and 1. The new state is accepted if R < min[1,exp(-dE/kT)], else it is rejected.

The rKMC algorithm for the potts style does allow spin flips known as "wild" flips. These are flips to values that
are not equal to any neighbor site value. At temperature 0.0 these are effectively disallowed, since they will
increase the energy of the system (except in the uninteresting case when the site already has a spin value not equal
to any neighbor values), but at finite temperature they will have a non-zero probability of occurring.

The following additional commands are defined by these applications:

temperature set Monte Carlo temperature

Restrictions: none

Related commands:

app_style ising

Default: none

126

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style potts/am/bezier command

Syntax:

app_style potts/am/bezier nspins width depth h0 ht n

potts/am/bezier = application style name•
nspins = number of possible spins•
width = maximum width of the melt pool•
depth = maximum depth of the melt pool•
h0 = heat affected zone distance at location of maximum pool width•
ht = heat affected zone distance at trailing edge of pool•
n = heat affected zone shape parameter; input values of n>=3/2

Examples:

app_style potts/am/bezier 250000 130 65 5

Description:

This is an on-lattice application derived from the app_style potts/neighonly application that simulates the
rastering of a molten pool and its accompanying heat-affected zone (HAZ) through a domain. Rastering is
achieved through the specification of layer-by-layer patterns, which can be combined into an overall pattern
specifying the translation of the molten zone through the entire simulation domain. The application allows for
arbitrary numbers of paths in each layer and an arbitrary number of layers in each pattern. Thus, the user can
construct any scan strategy desired by specifying individual layer patterns and how these patterns should be
repeated. Simulating arbitrary paths and layers is often used in conjunction with the Stitch IO via the set_stitch
and dump stitch commands.

The app requires specification of melt pool dimensions width,depth, and parameters describing the surrounding
heat affected zone h0,ht,n. The model also requires specification of the melt pool surface via the
potts/am/bezier control_points command. Whereas app_am ellipsoid uses two ellipsoids to define the moving
melt pool and heat effected zone, here, the molten pool is defined by two fourth order Bezier curves: 1) top
surface curve; 2) spine curve. The two curves are combined to form a 3D surface representing the interface
between liquid and solidified material. The shape of the pool is defined by user input control points for the two
curves and may be obtained from laboratory images or through process simulation or some other means.

•

127

https://spparks.github.io

Degree four Bezier curves require a total of five control points. However, symmetry of the melt pool across
xz-plane and the bounding top surface plane z=0 reduce the number of required inputs. Control points for the
top surface curve are input only for half the melt pool on account of symmetry; because the front and tail of
pool start at y=0 only three y components of the top curve are required while the other two components are
implicitly set to 0 by the app. Similarly, because the spine curve begins and ends at the top surface z=0 only
three components of z control points are required. Both the top surface curve and spine curve use the same x
component values and all five are required inputs. Melt pool width and depth is explicitly set according to user
inputs width, depth whereas melt pool length is implicitly defined by the ratio width/length according to the
input top surface curve control points. The x,y components of the top curve control points are scaled to achieve
the user input pool width. Similarly, spine curve control point components x,z are scaled to specified melt pool
depth. However, the final set of x components used for both the top surface curve and spine curve are values
obtained from the width scaling operation.

128

The following command defined by this application must be used to specify the bezier melt pool surface
geometry as described above.

potts/am/bezier Specifies control points and convexity of surface.

During the AM process, polycrystalline grains nucleate and evolve within the haz. This makes accurately
capturing the haz shape important to microstructure prediction. In this model, three parameters h0,ht,n are used
to describe the shape and extent of the haz. These parameters describe the variable heat affected zone that
depends upon location relative to the pool surface, shown in red below. The limit of the haz is shown by the
blue curve. h0 and ht are length scale parameters and n is a dimensionless shape factor. Here, h0 represents the
size of the haz at the maximum pool width and depth, while ht indicates the length of the haz at the top surface
trailing edge. Together, these parameters define a position-sensitive and variable haz.

Parameters h0,ht are input in spparks lattice units of length and characterize the heat-affected zone at the edge
and trailing edge of the pool. The heat-affected zone is always present, which means that h0 is always greater
than zero. Additionally, ht should be greater than or equal to h0.

The dimensionless parameter n describes the haz shape. The value for n should be greater than 3/2; a wide
range of possible haz zone shapes are possible but care should be taken. A python script is given in the
examples directory and was used to make the plots below for a fixed set of control points and varying set of haz
parameters. With fixed control points, melt pool dimensions are the same. Different values for the variable haz
parameters show changes in the resulting heat affected zone.

129

Some combination of the following additional commands are typically used by this application to specify a
raster pattern. A layer must be defined by using am cartesian_layer or am path_layer. A layer requires one to
many am path commands or at least one am pass command.

am pass: Specify pass parameters used to construct cartesian_layer.•
am path: Specify arbitrary paths via start/end points on a layer; sequence of am paths are used to
construct an am path_layer.

•

am cartesian_layer: A scan pattern on rectangular layer constructed from am pass and other parameters.•
am build: May be used for combinations of layers that comprise a pattern.•

The examples/potts_am_bezier directory has input files which illustrate use of some of these commands.
However these commands are not unique to this app and other examples within the examples directory may
also further illustrate.

Restrictions:

This application is only compatible with square and square cubic lattices.

This application can only be evolved by a rejection KMC (rKMC) algorithm. See the sweep command for more
details.

Related commands:

app_style am/ellipsoid, app_style potts/weld, app_style potts/weld/jom

Default: none

130

Details of the melt pool representation used in this app are described in A BÃ©zier curve informed melt pool
geometry for modeling additive manufacturing microstructures, Jeremy E Trageser, John A Mitchell, Kyle L
Johnson, Theron M Rodgers, Computer Methods in Applied Mechanics and Engineering, Volume 415, 1
October 2023 116208.

131

https://doi.org/10.1016/j.cma.2023.116208
https://doi.org/10.1016/j.cma.2023.116208

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style potts/am/path/gen command

Syntax:

app_style potts/am/path/gen

potts/am/path/gen = application style name

Examples:

app_style potts/am/path/gen

This app does not have any app specific parameters. It does however require AM raster commands listed
below.

Description:

This is a specialized additive manufacturing (AM) application. The app generates a sequence of computational
volumes (CV) which correspond with AM raster paths on rectangular domains; it runs very quickly and does
not need to be run in parallel. The sequence of CVs generated are ordered according to the am build specified;
the union of CVs forms the final desired 3D rectangular volume over which microstructures are simulated.

Microstructure simulations on the sequence of CVs emulates the additive manufacturing process by appending
incremental results to the output database much the same way material is added to a part during an AM build.
SPPARKS simulations can be conducted on each CV and stitched together to form the final built part. AM
microstructure simulations conducted this way require substantially reduced computational resources, both
memory and mpi cpu resources, when compared to what would be required if the entire domain was
instantiated for one large simulation. Starting and stopping the sequence of runs is also a highly flexible restart
capability for AM microstructure simulations.

To generated CV and raster path information, the am pathgen command, supplied by this app, must be in the
user input script; the script must also include am cartesian_layer and am pass commands which specify the
rectangular domain as well as raster path information. The script should not use the create_sites commad --
more on this below.

The directory examples/stitch/stitching_rectangular_domain contains an example demonstrating use of this app.
There are 3 primary elements to the example: 1) in.path_gen -- input script which uses this app; 2) in.am --
input script for a generic AM SPPARKS simulation on a CV parameterized; 3) stitch_rectangle.sh -- bash script
which orchestrates the overall set of simulations. Very limited editing of bash script is required; only the
spparks executable path is needed at top of script. Remaining parameters should be specified by in.path_gen
and in.am. See directory for further explanation.

The following commands are needed and required by this application.

•

region: Specify the larger intended simulation domain for the AM microstructure simulation. This domain will
be decomposed by the app into a series of significantly small simulation domains (CVs).

•

create_box: command to create region specified•
am pass: Specify pass parameters used to construct cartesian_layer.•
am cartesian_layer: A scan pattern on rectangular layer constructed from am pass and other parameters.•
am pathgen: May be used for combinations of layers that comprise a pattern. The command must be specified
in the input script to generate output CV and raster information and must come after all of the above

•

132

https://spparks.github.io

commands.

Restrictions:

Do not use the create_sites command with this application. For this app to function properly, the region and
create_box commands should be used to specify the larger intended simulation domain. If create_sites is used,
the app will attempt to create a lattice on the larger intended simulation domain potentially requiring huge
distributed memory requirements. If on the other hand the lattice is not created, the app is extremely light
weight and can be used to generate the sequence of CVs and raster information on the larger intended domain.
Thus the app can easily run in serial for any domain size provided the create_sites command is not used. It is
not necessary to run the app in parallel although it will do so gracefully.

This application will only generate paths specified by the am cartesian_layer command and associated am pass
commands.

Related commands:

None beyond those listed above.

Default: none

133

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style potts/am/weld command

Syntax:

app_style style nspins alpha beta haz

style = potts/am/weld•
nspins = number of possible Potts model spins•
alpha = controls relative size of melt pool shape at bottom compared to top•
beta = Bezier control point parameter that defines curvature of melt pool shape through thickness•
haz = width of the heat affected zone (haz) surrounding the melt pool

Examples:

app_style potts/am/weld 10000 0.5 0.75 50.0
weld_shape_ellipse 100.0 150.0

The app_style potts/am/weld command uses a subset of the command parameters used by app_style potts/weld
-- additional explanation provided below. For an explanation of the above commands and parameters, see
potts/weld example. This application requires melt pool geometry commands -- per example above and
explanation below.

This application requires rastering commands -- per explanation given below.

The pulse command is disabled in this application.

Description:

This is an application for 2D additive manufacturing simulations and is an adaptation of potts/weld; it can be
viewed as a potts/weld model with rastering commands as defined and used by potts_additive. The 2D
limitation of this app derives from the full penetration weld assumption; potts/weld; does not have a melt pool
bottom that naturally occurs in an additive manufacturing build the z-direction. Thickness of the lattice in the
z-direction is taken as the plate thickness per description in the potts/weld; such simulations will produce
meaningful 3D microstructures. However, it is generally more efficient to run 2D calculations with this app
using only one plane of lattice sites.

Application potts/am/weld command values are all associated with potts/weld and have identical
interpretations/meanings for potts/am/weld. Some values, e.g. yp,velocity, used in potts/weld, have been moved
to raster commands.

The following commands must be used to specify pool geometry:

weld_shape_ellipse specify elliptical pool shape parameters
weld_shape_teardrop specify teardrop pool shape parameters

The following additional commands are typically used by this application. A layer must be defined: one of am
cartesian_layer or am path_layer. A layer requires 1 to many am path or at least 1 am pass. Since this
application only runs 1 layer, the am build command described below is optional.

am pass: Specify pass parameters used to construct cartesian_layer.

•

134

https://spparks.github.io

am path: Specify arbitrary paths via start/end points on a layer; sequence of am paths are used to construct an
am path_layer.

am cartesian_layer: A scan pattern on rectangular layer constructed from am pass and other parameters.

am build: May be used to combinations of layers that comprise a pattern.

NOTE: Because potts/am/weld is intended for 2D simulations, only the first layer, as specified in the am build
command, is used; this application does not simulate multilayer builds. The examples/potts_additive directory
has input files which illustrate how to use the rastering commands.

The temperature command should be used to set simulation Monte Carlo temperature.

Restrictions:

This application is only compatible with square and square cubic lattices. It can only be evolved by a rejection
KMC (rKMC) algorithm. See sweep for more information.

Additional related commands:

app_style potts, app_style potts/grad, app_style am/ellipsoid, app_style potts/weld

Default: none

135

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style potts/grad command

Syntax:

app_style style grad_style nspins m0 convert Q T0 grad_x grad_y grad_z

style = potts/grad•
grad_style = temp or mob•
nspins = number of possible spins•
m0 = mobility constant for temp grad_style or mobility at the center of domain for mob grad_style•
convert = conversion factor for the gradients•
Q = activation energy•
T0 = temperature at the center of domain (temperature units)•
grad_x = gradient in the x direction•
grad_y = gradient in the y direction•
grad_z = gradient in the z direction•

Examples:

app_style potts/grad temp 10000 .0006 .25 1 350 3 -3 1
app_style potts/grad temp 10000 .0006 .1 1 375 3.5 3
app_style potts/grad mob 15000 .5 1 0 0 .0024 0 0

Description:

This is an on-lattice application derived from the app_style potts/neighonly application which applies gradients
given in three directions x,y, and z. The gradients can be either temperature or mobility gradients. If grad_style
mob is chosen, mobility gradients are used. If grad_style temp is chosen, temperature gradients are used.

When the grad_style temp is used, the mobility of each site is assumed to depend on temperature, according to the
equation m0 * exp(-Q/(KT)), where m0 is the mobility constant, K is Boltzmann's constant, T is the temperature
of the site, and Q is the activation energy. The temperature of a site depends linearly on its position in the lattice.
The linear function is uniquely defined by the value T0 at the center and the gradients in the x,y, and z directions,
grad_x, grad_y, and grad_z, respectively. The gradients are in units of temperature per lattice spacing (defined by
the lattice constant).

When the grad_style mob is used each site is assigned a mobility directly from the mobility gradients. The
arguments Q and T0 are not used during a mobility gradient simulation. m0 is the initial mobility at the center of
the domain. The mobility of each site depends linearly on its position in the lattice. The linear function is defined
by the mobility gradients. The mobility gradients are in units of mobility per lattice spacing (defined by the lattice
constant).

Under most circumstances a gradient will break periodicity in the gradient direction. This app requires a special
method for turning off periodicity. Refer to the examples under potts_grad for more details on how to turn
periodicity off.

Convert is an argument multiplied by the given gradients and is used to convert units as a convenience for the
user.

Grad_z is an optional argument and will default to zero if not specified.

136

https://spparks.github.io

The following additional commands are defined by these applications:

temperature set Monte Carlo temperature

Restrictions:

Convert must be > 0.

Only compatible with square and square cubic lattices.

Can only be evolved by a rejection KMC (rKMC) algorithm. See sweep for more information.

Nspins must be greater than the possible spins set with the set site range command.

Related commands:

app_style potts

Default:

As explained above the default for grad_z = 0.0.

(Garcia) A.L. Garcia, V. Tikare and E.A. Holm, "Three-Dimensional Simulation of Grain Growth of in a
Thermal Gradient with Non-Uniform Grain Boundary Mobility", Scripta Met 59[6] 661- 664 (2008).

137

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style potts/pin command

Syntax:

app_style potts/pin Q

potts/pin = application style name•
Q = number of spin states•

Examples:

app_style potts/pin 100

Description:

This is an on-lattice application which evolves a Q-state Potts model in the presence of pinning sites, which are
sites tagged with a spin value of Q+1 which do not change. Their effect is typically to pin or inhibit grain growth
in various ways.

The Hamiltonian representing the energy of site I is as follows:

Hi = Sum_j delta_ij

where Sum_j is a sum over all the neighbor sites of site I and delta_ij is 0 if the spin of sites I and J are the same
and 1 if they are different. The energy of the entire system is the sum of Hi over all sites.

This application performs Glauber dynamics, meaning the spin is flipped on a single site. See app_style diffusion
for an Ising model which performs Kawasaki dynamics, meaning the spins on two neighboring sites are swapped.

As explained on this page, this application can be evolved by either a kinetic Monte Carlo (KMC) or rejection
KMC (rKMC) algorithm. You must thus define a KMC solver or sweeping method to be used with the application
via the solve_style or sweep commands.

For solution by a KMC algorithm, a site event is a spin flip and its probability is min[1,exp(-dE/kT)], where dE =
Efinal - Einitial using the Hamiltonian defined above for the energy of the site, and T is the temperature of the
system defined by the temperature command (which includes the Boltzmann constant k implicitly). The KMC
algorithm does not allow spin flips known as "wild" flips, even at finite temperaturge. These are flips to values
that are not equal to any neighbor site value. The KMC algorithm also does not allow spin flips to a pinned site
value.

For solution by a rKMC algorithm, a random spin from 1 to Q is chosen. Note that this does not allow a spin flip
to a pinned site value, since those sites are set to Q+1. When the flip is attempted dE = Efinal - Einitial is
calculated, as is a uniform random number R between 0 and 1. The new state is accepted if R <
min[1,exp(-dE/kT)], else it is rejected.

The following additional commands are defined by this application:

pin create a set of pinned sites
temperature set Monte Carlo temperature

138

https://spparks.github.io

Restrictions: none

Related commands:

app_style potts

Default: none

139

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style potts/quaternion command

Syntax:

app_style style Q crystal theta_cut

style = potts/quaternion•
Q = number of spin states•
crystal = cubic or hcp•
theta_cut = optional positive cutoff angle (default=15.0) for Read-Shockley energy model•

Examples:

app_style potts/quaternion 6400 cubic
app_style potts/quaternion 10000 hcp 25.0

Description:

This is an on-lattice application which evolves a Q-state Ising model or Potts model, where each lattice site has a
spin value from 1 to Q. Sites flip their spin as the model evolves.

This Potts variant is designed to incorporate the effects of crystalline orientation into growth models, allowing
more detailed and realistic simulations of microstructure evolution in Cubic and HCP polycrystals. Emulating
crystalline orientation requires two additions to the standard Potts model: a choice of a reference crystal
symmetry, and calculation of grain boundary energy based upon relative orientation differences between adjacent
grains/sites.

The Hamiltonian representing the energy of site i is as follows:

Hi = (1/2) Sum_j e_ij

where Sum_j is a sum over all the neighbor sites j for site i and e_ij is the computed bond energy between sites i
and j. Bond energy between sites i and j is computed using the Read-Shockley relation and the angular
disorientation between sites i and j. The energy of the entire system is the sum of Hi over all sites.

The user selects either cubic or hcp crystal symmetry. To represent crystal orientation, each site i is initialized
with a randomly generated unit quaternion, qi. The app calculates the disorientation angle theta_ij between two
neighboring sites i and j using quaternions for the chosen crystal symmetry. The disorientation angle theta_ij is
used to calculate grain boundary energy and evolve microstructure in exactly the same way the potts model is
used to simulate grain growth and evolution without crystalline orientation.

More information on the calculation of theta_ij can be found in the Mackenzie and Handscomb papers (citations
1, 2, and 3 below). Python scripts in tools/potts_quaternion use the exact header files spparks uses; these python
scripts can be used to verify disorientation distributions for random cubic and hcp orientations.

The default value for the low-angle cut-off theta_cut is 15.0 degrees, a commonly-used cutoff angle for cubic
materials. To specify the low-angle cut-off different from the default, add the optional input value theta_cut. A
maximum disorientation angle exists for each crystal symmetry: 62.7 degrees for cubic and 93.8 degrees for hcp.
If the user's input theta_cut is greater than these maxima, the simulation will throw an error. A value theta_cut=0
is disallowed and does not make sense for the Read-Shockley model.

140

https://spparks.github.io

The disorientation angle is used to calculate low-angle grain boundary energies using the Read-Shockley equation
(citation 4). The plot below shows how grain boundary energy between sites ij varies with disorientation angle
according to the Read-Shockley model.

Restrictions: none

Related commands:

app_style potts, app_style ising

Default:

theta_cut = 15.0

[1] Mackenzie, J. K., and M. J. Thomson. "Some statistics associated with the random disorientation of cubes."
Biometrika 44, no. 1-2 (1957): 205-210. DOI: 10.2307/2333253

[2] Mackenzie, J. K. "Second paper on statistics associated with the random disorientation of cubes." Biometrika
45, no. 1-2 (1958): 229-240. DOI: 10.2307/2333059

[3] Handscomb, D.C. "On the Random Distribution of two Cubes", Canadian Journal of Mathematics , Volume
10 , 1958 , pp. 85 - 88 DOI: https://doi.org/10.4153/CJM-1958-010-0

[4] Read, W.T. and Shockley, W. "Dislocation models of crystal grain boundaries." Phys. Rev. 78, no. 3 (1950):
275. DOI: 10.1103/PhysRev.78.275

141

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style potts/strain command

Syntax:

app_style potts/strain Q

potts/strain = application style name•
Q = number of spin states•

Examples:

app_style potts/strain 100

Description:

This is an on-lattice application which evolve a Q-state Potts model with a per-site strain, where each lattice site
has a spin value from 1 to Q. Sites flip their spin as the model evolves. The strain energy can influence the grain
growth.

The Hamiltonian representing the energy of site I is the same as for the Potts model:

Hi = Sum_j delta_ij

where Sum_j is a sum over all the neighbor sites of site I and delta_ij is 0 if the spin of sites I and J are the same
and 1 if they are different. The energy of the entire system is the sum of Hi over all sites.

The per-site strain influences spin flips through altering the effective temperature as discussed below.

This applications perform Glauber dynamics, meaning the spin is flipped on a single site. See app_style diffusion
for an Ising model which performs Kawasaki dynamics, meaning the spins on two neighboring sites are swapped.

As explained on this page, this application is evolved by a kinetic Monte Carlo (KMC) algorithm. You must thus
define a KMC solver to be used with the application via the solve_style command.

For solution by a KMC algorithm, a site event is a spin flip and its probability is 1/(1+strain) when dE <= 0 and
exp(-dE/kT*) when dE > 0 and the temperature T is finite, where dE = Efinal - Einitial using the Hamiltonian
defined above for the energy of the site, T is the temperature of the system defined by the temperature command
(which includes the Boltzmann constant k implicitly), and T* = T (1 + strain). Thus the effect of the strain,
defined for each site, is to rescale the temperature.

The KMC algorithm does not allow spin flips known as "wild" flips, even at finite temperature. These are flips to
values that are not equal to any neighbor site value.

Strain values are stored for each site as a "double" value. This means they can be assigned to each site using the
"d1" keyword with the set command, or read in via the read_sites command.

The application does not change the strain assigned to each site as the simulation progresses. But if SPPARKS is
built and used as a library, as discussed in this section of the manual, the driver program can alter the per-site
settings. The "couple" directory of the LAMMPS molecular dynamics package includes a sample coupled
LAMMPS/SPPARKS application which uses LAMMPS to compute strain values at each site of a snapshot of

142

https://spparks.github.io
http://lammps.sandia.gov

grain structure produced by this application running in SPPARKS. The strains are passed back to SPPARKS
periodically by the driver application so that more Monte Carlo dynamics can be performed.

The following additional command is defined by this application:

temperature set Monte Carlo temperature

Restrictions: none

Related commands:

app_style potts

Default: none

143

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style potts/strain/pin command

Syntax:

app_style potts/strain/pin Q

potts/strain/pin = application style name•
Q = number of spin states•

Examples:

app_style potts/strain/pin 100

Description:

This is an on-lattice application which evolves a Q-state Potts model with a per-site strain, where each lattice site
has a spin value from 1 to Q. The application also allows for pinning of sites using a special spin value of Q+1.
Sites flip their spin as the model evolves but sites are not allowed to flip to a pinned value; sites with pinned
values also do not flip. Strain energy can influence grain growth.

See the app_style potts_strain and pin commands for details on how strain and pinned sites are incorporated into
this application.

The following additional commands are defined by this application:

temperature set Monte Carlo temperature
pin set pinning parameters

Restrictions: none

Related commands:

app_style potts, app_style potts_strain, pin

Default: none

144

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style potts/weld command

Syntax:

app_style style nspins yp alpha beta velocity haz

style = potts/weld•
nspins = number of possible Potts model spins•
yp = initial melt pool position along y-axis•
alpha = controls relative size of melt pool shape at bottom compared to top•
beta = Bezier control point parameter that defines curvature of melt pool shape through thickness•
velocity = velocity of melt pool motion (lattice sites per Monte Carlo step)•
haz = width of the heat affected zone (haz) surrounding the melt pool

Examples:

app_style potts/weld 10000 0 0.5 0.75 7.0 50.0
weld_shape_ellipse 100.0 150.0

This defines a potts/weld model with 10000 spins. An elliptical pool shape is specified with width and length of
100 and 150 sites respectively; note these are pool dimensions at the top surface of the weld. The value
alpha=0.5 scales the elliptical pool width and length at the top surface to 50 and 75 sites respectively at the
bottom (root) surface of the weld. The Bezier control point parameter specifies an outwardly curved pool; the
weld speed is 7 MCS and the heat effect zone is 50 sites wide.

This application also requires one of the following commands to specify pool geometry:

weld_shape_ellipse specify elliptical pool shape parameters
weld_shape_teardrop specify teardrop pool shape parameters

Description:

•

145

https://spparks.github.io

This is an on-lattice application derived from the app_style potts/neighonly command. It simulates grain growth
associated with a butt-weld process. Two sheets of material of equal thickness are assumed to be just touching;
this defines a joint to be welded.

Grain growth associated with joining the plates in a weld process is simulated by translating a weld pool
(simulates melt) along the joint (aligned with the y-coordinate axis). The weld pool is translated with a speed
defined by velocity. The weld pool geometry is defined using an elliptical pool (weld_shape_ellipse) or a
teardrop shaped pool (weld_shape_teardrop); these commands define the pool size and shape at the top surface
of the plates joined. It is assumed that the weld fully penetrates the thickess of the plates; the parameter 1 >=
alpha > 0 defines the the pool size at the bottom (root) of the plates relative to the top. The thickness of the
plates joined is assumed to be the number of lattice sites along the z-axis defined in region command.
Curvature of the pool in the plate thickness direction is controlled by the parameter 1 >= beta >= 0. When beta

146

is less than 0.5, the slope of the pool surface is increasing from top to bottom; when beta is greater than 0.5, the
slope of the pool surface is decreasing from top to bottom.

The model simulates melting and re-solidification by randomizing the spin at a lattice site when it falls within
the melt pool's volume. Upon exiting the melt pool, a rejection kinetic Monte Carlo event is performed at the
site, and the spin is flipped to the value of one of its neighbors (in the style of the potts/neighonly application).

The mobility of each site within the haz region decreases linearly with increasing distance from the melt pool
surface. The maximum mobility is 1 at the melt pool boundary and the minimum mobility is 0 at the outer
boundary of the heat affected zone as defined by haz. The mobility gradient is similar to that in potts/grad, but
is restricted to a smaller portion of the simulation domain as defined by the heat affected zone parameter haz.

Outside of the melt pool and heat affected zone, grain boundary mobility is set to 0, and grain evolution does
not occur.

Use the read_sites command to initialize the microstructure of plates welded; alternatively the set command can
be used to initialize the base metal microstructure.

The following additional commands are defined by this application:

weld_shape_ellipse specify elliptical pool shape parameters
weld_shape_teardrop specify teardrop pool shape parameters
pulse apply pulsed arc power
temperature set Monte Carlo temperature

Restrictions:

This application is only compatible with square and square cubic lattices. It can only be evolved by a rejection
KMC (rKMC) algorithm. See sweep for more information.

Related commands:

app_style potts, app_style potts/grad

Default:

By default, this model runs without the affect of pulsed power.

147

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style potts/weld/jom command

Syntax:

app_style potts/weld/jom nspins width length cap_length linear haz start_weld velocity weld_type exp_factor

potts/weld/jom = application style name•
nspins = number of possible spins•
width = maximum width of the melt pool•
length = maximum length of the melt pool trailing the melt spot•
cap_length = specify the length of the heat source region leading the melt spot•
haz = width of the heat affected zone (haz) surrounding the melt pool•
start_weld = timestep at which to begin welding (usually 0)•
velocity = velocity of heat source motion (lattice sites per Monte Carlo step)•
weld_type = heat source shape (valid options are 1-5, see below)•
exp_factor = rate of exponential decay of the haz mobility gradient•

Examples:

app_style potts/weld/jom 10000 30 25 10 40 0 10.0 1 0.01

Description:

This is an on-lattice application derived from the app_style potts/neighonly application which simulates a weld
heat source traveling along the y-axis from y = 0 to yhi. The heat source is centered along the x-axis at x = xhi / 2
and top plane is located at zhi.

The model simulates melting and re-solidification by randomizing the spin at a lattice site when it falls within the
melt pool's volume. Upon exiting the melt pool, a rejection kinetic Monte Carlo event is performed at the site, and
the spin is flipped to the value of one of its neighbors (in the style of the potts/neighonly application).

The mobility of each site within the haz decreases exponentially with increasing distance from the melt pool
surface. The maximum mobility is 1 at the melt pool boundary and the minimum mobility is 0 at the outer haz
boundary. The mobility gradient is similar to that in potts/grad, but is restricted to a portion of the simulation
domain defined by haz. Outside of the melt pool and haz, grain boundary mobility is set to 0, and grain evolution
does not occur.

This program was used in the paper by Rodgers et al.

There are five different heat source shapes available defined by the integer (between 1 and 5) of "weld_type":

1 = "ellipsoid", An Goldak-style double ellipsoid heat source whose melt pool dimensions are defined
with "width", "length", "cap_length", and ellipsoid_depth

•

2 = "keyhole", A keyhole heat source comprised of the union of two ellipsoids. A "shallow" ellipsoid
whose dimensions are defined with "width", "length", and ellipsoid_depth, and a "deep" ellipsoid whose
dimensions are defined with deep_width and deep_length. The "deep" ellipsoid is assumed to penetrate
the entire depth of the simulation domain

•

3 = "linear", A heat source with linearly varying boundaries. The heat source's cross-section is constant
along the z-axis

•

148

https://spparks.github.io

4 = "cap", A heat source with a power-law dependent boundaries. The heat source's cross-section is
constant along the z-axis

•

5 = "circle", A heat source with circular boundaries. The heat source's cross-section is constant along the
z-axis

•

The following additional commands are defined by this application:

ellipsoid_depth define the maximum depth of the ellipsoid-shaped melt pool, or the maximum depth of the
shallow melt pool in the keyhole model

deep_width define the maximum width of the deep ellipsoid in the keyhole model
deep_length define the maximum length of the deep ellipsoid in the keyhole model

Restrictions:

Only compatible with square and square cubic lattices.

Can only be evolved by a rejection KMC (rKMC) algorithm. See sweep for more information.

Melt pool width + haz must be =< xhi.

Related commands:

app_style potts, app_style potts/grad, app_style potts/weld

Default: none

(Rodgers) T.M. Rodgers, J.D. Madison and V. Tikare, "Predicting Mesoscale Microstructural Evolution in
Electron Beam Welding", JOM 68[5] 1419- 1426 (2016).

149

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style relax command

Syntax:

app_style relax delta

relax = style name of this application•
delta = maximum displacement distance of a particle (distance units)•

Examples:

app_style relax 0.5

Description:

This is an off-lattice application which treats sites as particles which interact through a pair potential and whose
collective energy is relaxed via Metropolis Monte Carlo translational moves.

The energy of a particle I is as follows:

Ei = Sum_j phi(Rij)

where Sum_j is a sum over all the neighbor of pariticle I within some cutoff distance, phi() is the potential energy
function defined by the pair_style command, and Rij is the distance between particles I and J. The energy of the
entire system is the sum of Ei over all particles. The pair_style command also defines the cutoff distance.

As explained on this page, this application is evolved by a Metroplis Monte Carlo (MMC) algorithm. You must
thus define a sweeping method to be used with the application via the sweep command.

For solution by the MMC algorithm, once a particle is chosen, a translational move of the particle is made, by
choosing a random location within a sphere of radius delta surrounding the particle. The energy of the particle
before and after the move is calculated, to give dE = Efinal - Einitial. The move is accepted if R <
min[1,exp(-dE/kT)], else it is rejected, where R is a uniform random number R between 0 and 1.

The following additional commands are defined by this application:

temperature set Monte Carlo temperature

Restrictions: none

Related commands:

Default: none

150

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style sinter command

Syntax:

app_style style

style = sinter

Examples:

app_style sinter

Description:

This is on-lattice application which evolve a N-state Ising model or Potts model of sintering. Each lattice site has
a spin value from -1 to N, with values of 0 representing internal pores sites, positive values representing grain
sites and values of -1 representing the space outside the sintering compact. Sites change their spin to simulate
microstructural evolution during sintering.

The Hamiltonian representing the energy of site i is as follows:

Hi = Sum_j delta_ij

where Sum_j is a sum over all the neighbor sites of site i and delta_ij is 0 if the spin of sites i and j are the same
and 1 if they are different. The energy of the entire system is the sum of Hi over all sites.

A complete description of the sintering model and its parameters can be found in the 2010 Tikare, et.al. paper
below.

This application mainly performs Kawasaki dynamics, meaning the spins on two neighboring sites are swapped.
See app_style pots for an Ising model, which performs Glauber dynamics, meaning the spin is flipped on a single
site.

As currently implemented, this application can be evolved only by the rejection KMC (rKMC) algorithm. You
must thus define a sweeping method to be used with the application via the sweep command.

For solution by a rKMC algorithm, three different events are programmed: grain growth, pore migration and
vacancy creation and annihilation. If the site selected is a grain site, a grain growth event is attempted: a new spin
is chosen randomly from the values held by neighbor grain sites. If the site selected is a pore site, a pore migration
or a vacancy creation and annihilation event is attempted. For the pore migration event, a new spin is chosen from
the values held by neighboring grain sites such that the flip results in the minimum possible energy. For a vacancy
creation and annihilation event, a pore site is moved to a neighboring grain site such that the resulting pore site is
completely surrounded by grain sites (vacancy creation at grain boundary) with the subsequent movement of the
vacancy to the surface of the sintering compact. In all the events, dE = Efinal - Einitial is calculated, as is a
uniform random number R between 0 and 1. The new state is accepted if R < min[1,exp(-dE/kT)], else it is
rejected. T is the temperature for simulating the event, so there is one temperature for grain growth, another for
pore migration and a third temperature for vacancy creation and annihilation. These temperatures are defined by
event_temperatures command (which includes the Boltzmann constant k implicitly).

151

https://spparks.github.io

Parallel implementation of the Monte Carlo model for sintering in SPPARKS code is described in the 2011
Garcia-Cardona paper below.

Initialization:

There are two methods to initialize the simulation space: randomly or from a file.

To do it randomly use the commands:

set i1 unique

set i1 value 0 fraction p•

The first command sets the spin of each site in the simulation space to a different value. The second command
sets a fraction p of the spins to value 0, i.e. it defines the initial porosity of the sample. In this case, allow the grain
structure to grow before starting sintering. This can be done by increasing the time to start the vacancy creation
and annihilation event, using the time_sinter_start command.

To do it from a file:

See the documentation for the read_sites command. You should have defined previously the size of the
corresponding simulation region and box by using the commands: region, create_box and create_sites

The following additional commands are defined by this application:

event_temperatures set Monte Carlo temperature for each event
event_ratios set frequency to attempt each event
time_sinter_start set time to start attempting the vacancy creation and annihilation event

The following diagnostic styles are also useful with this application:

sinter_avg_neck_area - calculate average neck area of the porous compact•
sinter_density - calculate density of the porous compact•
sinter_free_energy_pore - calculate surface pore area of the porous compact•
sinter_pore_curvature - calculate pore curvature of the porous compact•

Use of the pore curvature to determine the sintering stress is described in the 2012 Garcia-Cardona paper below.

Restrictions: none

Related commands:

app_style potts

Default: none

(Tikare) V. Tikare, M. Braginsky, D. Bouvard and A. Vagnon, Numerical simulation of microstructural evolution
during sintering at the mesoscale in a 3D powder compact, Comp. Mater. Sci., 48, 317-325 (2010).

(Garcia-Cardona) C. Garcia-Cardona, V. Tikare, S. J. Plimpton, Parallel simulation of 3D sintering, IJCMSSE,

152

4, 37-54 (2011).

(Garcia-Cardona2) C. Garcia-Cardona, V. Tikare, B. Patterson, E.A. Olevsky, On Sintering Stress in Complex
Powder Compacts, J. Am. Ceram. Soc., 95, 2372-2382 (2012).

153

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style sos command

Syntax:

app_style sos bond_energy keyword args

sos = application style name•
bond_energy = lateral bond energy between columns•
zero or more keyword/value pairs may be appended•
keyword = xsin

xsin args = amp Lx Lz
 amp = amplitude of initial sine wave
 Lx = wavelength of initial sine wave in x direction
 Lz = wavelength pf initial sine wave in z direction (ignored if > 1.0e10)

•

Examples:

app_style sos 1.0 xsin 5.5 20.0 1.0e+20
app_style sos 2.0 none

Description:

The SOS (Solid-on-Solid) model is an on-lattice application that models a solid surface as a 1D or 2D lattice of
sites. At each site an integer value represents the height of the surface at that site, so that collectively the heights
of all the sites represent a surface profile with no overhangs or vacancies.

The Hamiltonian representing the energy of a site I is:

Hi = 1/2 J Sum_j |h_i - h_j|

where J is the bond energy, specified through the bond_energy parameter, and h_i and h_j are the heights at sites I
and J. Sum_j represents a sum over the nearest neighbors of i, e.g. the neighbors to the immediate left and right
for a 1D lattice.

If the xsin keyword is used, an initial height profile is assigned by a sine function. If the z dependence is inactive
(Lz > 1.0e10), this is

hi = round(amp*sin(2*pi*x/Lx))

If the z dependence is active, this is instead:

hi = round(amp * min(sin(2*pi*x/Lx), sin(2*pi*z/Lz)))

This application performs Kawasaki dynamics, in which each event involves an "atom" hopping from one site to a
neighboring site. That is, an event consists of site I losing one unit of height, and either site I+1 or I-1
simultaneously gaining one unit of height.

This application does not allow for use of a rejection KMC (rKMC) algorithm; only KMC options are supported.
See this page for more information. For solution by a KMC algorithm, the probability of each "atom hop" event is
min[P0, P0*exp(-dE/kT)], where P0 is a scaling factor, dE = Efinal - Einitial using the Hamiltonian defined above
for the energy of the site, and T is the temperature of the system defined by the temperature command (which

154

https://spparks.github.io

includes the Boltzmann constant k implicitly). The scaling factor P0 is given by 1/nn where nn is the number of
nearest neighbors for each site.

The following additional commands are defined by this application:

temperature set Monte Carlo temperature

Restrictions: none

Related commands:

app_style diffusion

155

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style command

Syntax:

app_style style args

style = one of a list of possible style names (see below)•
args = arguments specific to an application, see application doc page for details•

Examples:

app_style diffusion ...
app_style ising ...
app_style potts ...
app_style relax ...
app_style chemistry ...
app_style test/group ...

Description:

This command defines what model or application SPPARKS will run. There are 3 kinds of applications:
on-lattice, off-lattice, and general.

On-lattice applications define a set of static sites in space on which events occur. The sites can represent a
crystalline lattice, or be more disordered. The key point is that they are immobile and that each site's
neighborhood of nearby sites can be specified. Here is the list of on-lattice applications SPPARKS currently
includes:

diffusion = vacancy exchange diffusion model•
erbium = H/He diffusion/rection on an Erbium lattice•
ising = Ising model•
ising/single = variant Ising model•
membrane = membrane model of lipid,water,protein•
potts = Potts model for grain growth•
potts/neigh = variant Potts model•
potts/neighonly = variant Potts model•
potts/grad = Potts model with temperature gradient•
potts/pin = Potts model with pinning sites•
potts/strain = Potts model with per-site strain•

Off-lattice applications define a set of mobile sites in space on which events occur. The sites typically represent
particles. Each site's neighborhood of nearby sites is defined by a cutoff distance. Here is the list of off-lattice
applications SPPARKS currently includes.

relax = Metropolis Monte Carlo relaxation•

General applications require no spatial information. Events are defined by the application, as well as the influence
of each event on others. Here is the list of general applications SPPARKS currently includes.

chemistry = biochemical reaction networks•
test/group = artificial chemical networks that test solve_style•

156

https://spparks.github.io

The general applications in SPPARKS can only be evolved via a kinetic Monte Carlo (KMC) solver, specified by
the solve_style command. On-lattice and off-lattice applications can be evolved by either a KMC solver or a
rejection kinetic Monte Carlo (rKMC) method or a Metropolis (MMC) method. The rKMC and MMC methods
are specified by the sweep command. Not all on- and off-lattice applications support each option.

KMC models are sometimes called rejection-free KMC or the N-fold way or the Gillespie algorithm in the MC
literature. The application defines a list of "events" and associated rates for each event. The solver chooses the
next event, and the application updates the system accordingly. This includes updating of the time, which is done
accurately since rates are defined for each event. For general applications the definition of an "event" is arbitrary.
For on-lattice application zero or more possible events are typically defined for each site.

rKMC models are sometimes called null-event KMC or null-event MC. Sites are chosen via some method (see the
sweep command), and an event on that site is then selected which is accepted or rejected. Again, the application
defines the "events" for each site and associated rates which influence the acceptance or rejection. It also defines
the null event which is essentially part of the rejection probability.

For KMC and rKMC models, a time is associated with each event (including the null event) by rates that the user
defines. Thus event selection induces a time-accurate simulation. The MMC method is similar to the rKMC
method, except that it is not time-accurate. It selects an event to perform and accepts or rejects it, typically based
on an energy change in the system. There is no rate associated with the event, and no requirement that events be
chosen with relative probabilities corresponding to their rates. The Metropolis method tends to evolve the system
towards a low energy state. As with the rKMC method, the sweep command is used to determine how sites are
selected.

For all three methods (KMC, rKMC, MMC) the rules for how events are defined and are accepted or rejected are
discussed in the doc pages for the individual applications.

This table lists the different kinds of solvers and sweeping options that can be used for on- and off-lattice
applications in SPPARKS. Serial and parallel refer to running on one or many processors. Sector vs no-sector is
what is set by the sector command. The rKMC options are set by the sweep command. The MMC options are the
same as for rKMC.

method serial/no-sectors serial/sectors parallel/no-sectors parallel/sectors
exact KMC yes yes no yes

rKMC random yes yes no yes
rKMC raster yes yes no yes
rKMC color yes yes yes yes

rKMC color/strict yes no yes no
Note that masking can also be turned on for rKMC algorithms via the sweep command if the application supports
it. Off-lattice applications do not support the color or masking options.

Restrictions: none

Related commands: none

Default: none

157

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style test/group command

Syntax:

app_style test/group N Nmax pmax pmin delta keyword value

test/group = application style name•
N = # of events to choose from•
Mmax = max number of dependencies for each event•
pmax = max probability•
pmin = min probability•
delta = percentage adjustment factor for dependent probabilities•
zero or more keyword/value pairs may be appended•
keyword = lomem

lomem value = yes or no

•

Examples:

app_style test/group 10000 30 1.0 1.0e-6 5
app_style test/group 10000 30 1.0 1.0e-9 10 lomem yes

Description:

This is a general application which creates and evolves an artificial network of coupled events to test the
performance and scalability of various kinetic Monte Carlo solvers. See the paper by (Slepoy) for additional
details on how it has been used.

The set of coupled events can be thought of as a reaction network with N different chemical rate equations or
events to choose from. Each equation is coupled to M randomly chosen other equations, where M is a uniform
random number from 1 to Mmax. In a chemical reaction sense it is as if an executed reaction creates M product
molecules, each of which is a reactant in another reaction, affecting its probability of occurrence.

Initially, the maximum and minimum probability for each event is an exponentially distributed random value
between pmax and pmin. If solve_style group is used, these values should be the same as the pmax and pmin used
as parameters in that command. Pmin must be greater than 0.0.

As events are executed, the artificial network updates the probabilities of dependent reactions directly by
adjusting their probability by a uniform random number betwee -delta and +delta. Since delta is specified as a
percentatge, this means pold * (1 - delta/100) <= pnew <= pold * (1 + delta/100). Delta must be less than 100.

If the lomem keyword is set to no, then the random connectivity of the network is generated beforehand and
stored. This is faster when events are executed but limits the size of problem that will fit in memory. If lomem is
set to yes, then the connectivity is generated on the fly, as each event is executed.

This application can only be evolved using a kinetic Monte Carlo (KMC) algorithm. You must thus define a KMC
solver to be used with the application via the solve_style command

When the run command is used with this application it sets the number of events to perform, not the time for the
run. E.g.

158

https://spparks.github.io

run 10000

means to perform 10000 events, not to run for 10000 seconds.

No additional commands are defined by this application.

Restrictions: none

Related commands:

solve_style group

Default:

The default value is lomem = no.

(Slepoy) Slepoy, Thompson, Plimpton, J Chem Phys, 128, 205101 (2008).

159

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

barrier command

Syntax:

barrier dstyle Q
barrier dstyle delta Q
barrier dstyle I J Q

dstyle = hop or schwoebel•
Q = barrier height (energy units)•
delta = difference in coordination number of 2 participating sites•
I,J = coordination numbers of 2 participating sites•

Examples:

barrier hop 0.25
barrier schwoebel 1 0.3
barrier hop -1 0.35
barrier hop 3 4 0.2
barrier schwoebel * * 0.1
barrier hop 2*5 3* 0.1

Description:

This command sets the energy barrier for a diffusive hop of an atom from an occupied site to a nearby vacant site.
See the app_style diffusion command for how the barrier is used in conjunction with the energy change of the
system due to the hop to calculate a probability for the hop to occur.

Barriers can be assigned to two kinds of diffusive hops. The first is a hop to a nearest-neighbor vacancy, which is
specified by setting dstyle to hop. The second is a Schwoebel hop to a 2nd nearest-neighbor vacancy, which is
specified by setting dstyle to schwoebel. The latter is only allowed if the app_style diffusion command also used
schwoebel for its dstyle setting.

Barriers are assigned based on two coordination numbers, for the initial site of the hopping atom and its final site.
In both cases the coordination count does not include the hopping atom itself. Thus typically
(Nmax+1)*(Nmax+1) values should be specified by using this command one or more times, which can be thought
of as an (I,J) matrix entries where both I and J vary from 0 to Nmax inclusive, when Nmax is the number of
neighbor sites for each lattice site. There is one such matrix for nearest-neighbor diffusive hops and one for
Schwoebel hops. Also note that it is permissible to have Qij != Qji to set forward/reverse rates, particularly if the
model does not use energies, but only barriers.

If only one argument Q is specified, then all matrix values are set to Q. If the Q value = 0.0, this effectively turns
off barriers in the model.

If two arguments delta and Q are specified, then all matrix elements where delta = J-I are set to Q.

If three arguments I and J and Q are specified, then the (I,J) element is set to Q. In this case, the I.J indices can
each be specified in one of two ways. An explicit numeric value can be used, as in the 4th example above. Or a
wild-card asterisk can be used to set the energy value for multiple coordination numbers. This takes the form "*"
or "*n" or "n*" or "m*n". If Nmax = the number of neighbor sites, then an asterisk with no numeric values means
all coordination numbers from 0 to Nmax. A leading asterisk means all coordination numbers from 0 to n
(inclusive). A trailing asterisk means all coordination numbers from n to Nmax (inclusive). A middle asterisk

160

https://spparks.github.io

means all coordination numbers from m to n (inclusive).

The Q value should be in the energy units defined by the application's Hamiltonian and should be consistent with
the units used in any temperature command.

Restrictions:

This command can only be used as part of the app_style diffusion application.

Related commands:

deposition, ecoord

Default:

Energy barriers for all hop events are set to 0, which is effectively no barriers.

161

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

boundary command

Syntax:

dimension x y z

x,y,z = p or n in each dimension

p is periodic
n is non-periodic

•

Examples:

boundary p p n

Description:

Set the style of boundaries for the global simulation box in each dimension. The size of the simulation box is set
by the create_box or read_sites commands.

The style p means the box is periodic in that dimension, so that sites can interact across the boundary.

The styles n means the box is non-periodic in that dimension, so that sties do not interact across the boundary.

Note that the interaction of a pair of neighboring sites is really controlled by each of their neighbor lists which are
setup by either the create_sites or read sites commands. It is possible to have a periodic system with sites that do
not interact across the periodic boundary, because of the way the neighbor lists of sites near the boundary are
setup. See the create_sites or read sites for details.

IMPORTANT NOTE: The boundary command does not yet work with off-lattice applications.

Restrictions:

This command must be used before the simulation box is defined by a read_sites or create_box command.

A 2d simulation must be periodic in the z dimesion. A 1d simulation must be periodic in the y and z dimensions.

Related commands:

dimension

Default:

boundary p p p

162

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

clear command

Syntax:

clear

Examples:

(commands for 1st simulation)
clear
(commands for 2nd simulation)

Description:

This command deletes all data, restores all settings to their default values, and frees all memory allocated by
SPPARKS. Once a clear command has been executed, it is as if SPPARKS were starting over, with only the
exceptions noted below. This command enables multiple jobs to be run sequentially from one input script.

These settings are not affected by a clear command: the working directory (shell command), log file status (log
command), echo status (echo command), and input script variables (variable command).

Restrictions: none

Related commands: none

Default: none

163

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

count command

Syntax:

count species N

species = ID of chemical species•
N = count of molecules of this species•

Examples:

count kinase 10000
count NFkB-IKK 300

Description:

This command sets the molecular count of a chemical species for use in the app_style chemistry application.

The species ID can be any string defined by the add_species command.

Restrictions:

This command can only be used as part of the app_style chemistry application.

Related commands:

app_style chemistry, add_species, add_reaction

Default:

The count of a defined species is 0 unless set via this command.

164

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

create_box command

Syntax:

create_box region-ID

region-ID = ID of region to use as simulation domain•

Examples:

create_box mybox

Description:

This command creates a simulation box based on the specified region for on-lattice and off-lattice spatial
simulations. Thus a region command must first be used to define a geometric domain. SPPARKS encloses the
region (block, sphere, etc) with an axis-aligned (orthogonal) box which becomes the simulation domain.

The read_sites command can also be used to define a simulation box.

Restrictions:

The app_style command must be used to define an application before using the create_box command.

Related commands:

create_sites, region, read_sites

Default: none

165

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

create_sites command

Syntax:

create_sites style arg keyword values ...

style = box or region

box arg = none
region arg = region-ID

 region-ID = sites will only be created if contained in the region

•

zero or more keyword/value pairs may be appended•
keyword = value or basis

value values = label nvalue
 label = site or iN or dN
 nvalue = specific value to set all created sites to

basis values = M nvalue
 M = which basis site (see asterisk form below)
 nvalue = specific value to set all created basis sites to

global values = Xfull Yfull Zfull
 XYZ full = extent of global lattice to generate site IDs from

•

Examples:

create_sites box
create_sites region surf value site 1
create_sites box value i2 0 basis 1 1 basis 2* 2

boundary n n n
lattice sc/26n 1.0
create_box box block 101 200.1 1001 1200.1 301 400.1
create_sites box global 1000 2000 1000

Description:

This command creates "sites" on a lattice for on-lattice and off-lattice applications. For on-lattice applications it
also defines a connectivity between sites that is stored as a neighbor list of nearby sites that each site interacts
with.

This command is an alternative to reading in site coordinates and neighbor connectivity via the read_sites
command.

To use this command, a simulation box must already exist, created via the create_box command. Likewise a
lattice must also be defined using the lattice command.

In SPPARKS, a "site" is a point in space at which an application, as defined by the app_style command, can
perform events. For on-lattice applications, the site is static and has a static set of neighboring sites with which it
interacts. For off-lattice applications, a site is like a particle. It moves and has a dynamic neighborhood of nearby
particles with which it interacts.

This command generates the set of lattice points that fall within the simulation box. For any periodic dimension as
specified by the boundary command, the origin of the lattice is the lower box boundary (in that dimension). Thus

166

https://spparks.github.io

coordinates begin at the lower boundary and increment by the lattice constant (in that dimension). The simulation
box size must be an integer multiple of the lattice constant, to insure consistent placement of sites near periodic
boundaries. SPPARKS is careful to put exactly one site on a periodic boundary (on the lower side of the box), not
zero or two.

For non-periodic dimensions, the origin of the lattice is 0.0 (in that dimension). Thus coordinates begin at 0.0 and
increment in both directions. Only coordinate inside the simulation box become sites. If a lattice point is inside or
on a lower boundary (in that dimension), it is a site. Likewise if a lattice point is outside or on an upper boundary
(in that dimension) it is considered outside the box. Thus for non-periodic dimensions you may need to tweak the
simulation box size to get precisely the sites you want.

For the box style, all lattice points that fall inside the simulation box are stored as sites, as described in the
preceding paragraphs. For the region style, a lattice point must additionally be consistent with the region volume
to be stored as a site. Note that a region can be specified so that its volume is inside or outside a box boundary.

For on-lattice applications, after sites have been created, a neighbor list is also generated for each site, as defined
by each lattice style. Think of this as the set of lattice points near a central site, with which it interacts in the sense
defined by an application. If the simulation box is periodic in a dimension, the neighbors of a central site may
include sites on the other side of the box. This will not be the case for a non-periodic dimension. If some sites do
not exist, e.g. when using the region style, then those sites will not have a complete set of neighbors.

SPPARKS attempts to create sites with consecutive IDs from 1 to N, where N is the total number of sites that fill
the simulation box. But it cannot always do this. In these scenarios consecutive IDs should be produced:

style = box and the simulation box is fully periodic•
style = box, the simulation box is fully periodic or non-periodic (in one or more dimensions), a simple
regular lattice is used, namely line (line/2n) for 1d models, square (sq/4n or sq/8n) for 2d, or simple cubic
(sc/6n or sc/26n) for 3d, and the global keyword is not used

•

In the 2nd scenario the site IDs will vary fastest in x, then in y, and slowest in z. So it easy to use another program
to generate values on a regular lattice associated with the correct IDs.

In all other cases, the site IDs may not be consecutive (1 to N). In particular, they may not be consecutive in any
of these cases:

style = region•
the global keyword is used•
the simulation box is non-periodic (in one or more dimensions) and the lattice is not one of the simple
regular lattices listed above for 1d, 2d, or 3d

•

Regardless of what the site IDs are, they will be the same independent of the number of processors used to run the
simulation.

Depending on the application, each site stores zero of more integer and floating-point values. By default these are
set to zero when a site is created by this command. The value and basis keywords can override the default.

The value keyword specifies a per-site value that will be assigned to every site as it is created. The label
determines which per-site quantity is set. iN and dN mean the Nth integer or floating-point quantity, with 1 <= N
<= Nmax. Nmax is defined by the application. If label is specified as site it is the same as i1. The quantity is set to
the specified nvalue, which should be either an integer or floating-point numeric value, depending on what kind of
per-site quantity is being set.

167

The basis keyword can be used to override the value keyword setting for individual basis sites as each unit cell is
created. The per-site quantity (e.g. i2) specified by the value keyword is set for basis sites M. The quantity is set to
the specified nvalue for the basis keyword, instead of the nvalue from the value keyword. See the lattice
command for specifics on how basis atoms and unit cells are defined for each lattice style.

M can be specified in one of two ways. An explicit numeric value can be used, such as 2. A wild-card asterisk can
also be used in place of or in conjunction with the M argument to specify multiple basis sites together. This takes
the form "*" or "*n" or "n*" or "m*n". If N = the total number of basis sites, then an asterisk with no numeric
values means all sites from 1 to N. A leading asterisk means all sites from 1 to n (inclusive). A trailing asterisk
means all sites from n to N (inclusive). A middle asterisk means all sites from m to n (inclusive).

The global keyword only affects generation of site IDs. It can only be used for on-lattice applications, for style =
box, and for simple regular lattices. The latter requirement means lattice = line (line/2n) for 1d models, square
(sq/4n or sq/8n) for 2d, or simple cubic (sc/6n or sc/26n) for 3d.

It is useful when a series of SPPARKS simulations are being run on a global lattice of sites that is larger than the
simulation box for an individual simulation, e.g. in an additive manufacturing model. In this scenario, the per-site
values used to initialize a simulation are typically read from a file (see the read_sites or set file commands) and
the per-site values generated by the simulation are archived to a file (see the dump hdf5 command). In both cases
the archive file contains sites for the entire global lattice and is accessed by site IDs. This command allows an
individual SPPARKS simulation to generate site IDs that match those in the file for the global lattice.

The Xfull, Yfull, Zfull values are the size of the global lattice. Its site IDs are assumed to run from 1 to N =
Xfull*Yfull*Zfull. Note that for a 2d model, Zfull = 1 is required. As described above for SPPARKS site IDs on a
regular lattice, the global IDs vary fastest in x, then y, and slowest in z.

To use the global option correctly, the simulation box created by the create_box command must be specified
appropriately.

If a dimension of the global lattice is intended to be non-periodic, because a single SPPARKS simulation will
only model a portion of that dimension, then SPPARKS must set it to be non-periodic via the boundary command.
And the lo/hi box boundaries in that dimension, as specified by the create_box command, should be set so that
lattice sites are generated that correspond to the desired portion of the global lattice.

For example, imagine a global lattice that is 1000x2000 for a 2d simulation with both dimensions non-periodic.
And you wish SPPARKS to model the lower left 100x100 corner of that global lattice. Assume the x and y lattice
spacings are 1.0.

The following commands would setup the sites for this simulation:

dimension 2
boundary p p p
lattice sq/4n 1.0
region box block 1 100.1 1 100.1 -0.5 0.5
create_box box
create_sites box global 1000 2000 1

Picture the global lattice as a 1000x2000 array of sites numbered with IDs ranging from 1 to 2 million, where the
lower left corner has ID = 1, and the IDs increase fastest in x, and slowest in y. SPPARKS will create sites with
coordinates and IDs corresponding to the lower left 100x100 corner of that array. I.e. the sites in the 100x100
SPPARKS model will be ordered as follows:

1,2,3, ..., 100 # first row of x sites
1001,1002,1003, ... 1100 # next row of x sites

168

...
99001,99002,99003, ... 99100 # last row of x sites

Note the need to use xhi = yhi = 100.1, instead of 100.0, in the "create_box" command for the upper bound of
non-periodic dimensions. This is because, as explained above, a non-periodic box will not generate sites that lie
exactly on the upper-boundary (in any dimension). So if 100.0 were used, the size of the SPPARKS domain in
that dimension would be one less than desired.

Similarly, the same commands with this substitution:

region box block 901 1000.1 901 1000.1 -0.5 0.5

would model the upper right corner of the global lattice. The site at the lower left corner of the 100x100
SPPARKS simulation would have ID = 1900901; the upper-right corner site would have ID = 2 million.

Finally, if a dimension of the global lattice is intended to be periodic, then SPPARKS must set it to be periodic via
the boundary command and each SPPARKS simulation must span that entire dimension. As described above, the
simulation box size in that dimension must thus be N lattice units in size, where N = Nfull for that dimension. For
example, if y is a periodic dimension, then the ylo and yhi parameters in the create_box command must be such
that yhi-ylo = Yfull. Any pair of ylo,yhi values that satisfy this constraint can be used.

Here are more examples of several sets of SPPARKS create_sites commands using the global keyword, for 2d
global lattices of 2 different sizes, with either periodic or non-periodic boundaries.

global = 10x10, periodic in both x and y
SPPARKS models 100 sites, must model entire global lattice
dimension 2
boundary p p p
lattice sq/4n 1.0
region box block 0 10 0 10 -0.5 0.5
create_box box
create_sites box global 10 10 1

global = 10x10, non-periodic in both dims
SPPARKS models 25 sites = upper-left quarter
dimension 2
boundary n n p
lattice sq/4n 1.0
region box block 1 5.1 6 10.1 -0.5 0.5
create_box box
create_sites box global 10 10 1

global = 10x10, non-periodic in x, periodic in y
SPPARKS models 50 sites = right half, must model entire y dim
dimension 2
boundary n p p
lattice sq/4n 1.0
region box block 6 10.1 0 10 -0.5 0.5
create_box box
create_sites box global 10 10 1

global = 10x10, periodic in x, non-periodic in y
SPPARKS models 50 sites = middle section, must model entire x dim
dimension 2
boundary p n p
lattice sq/4n 1.0
region box block 0 10 3 7.1 -0.5 0.5
create_box box
create_sites box global 10 10 1

169

global = 100x100, non-periodic in both dims
SPPARKS models 100 sites = upper left corner
dimension 2
boundary n n p
lattice sq/4n 1.0
region box block 1 10.1 91 100.1 -0.5 0.5
create_box box
create_sites box global 100 100 1

global = 100x100, non-periodic in both dims
SPPARKS models 100 sites = lower middle section
dimension 2
boundary n n p
lattice sq/4n 1.0
region box block 45.0 54.1 1 10.1 -0.5 0.5
create_box box
create_sites box global 100 100 1

Restrictions:

The app_style command must be used to define an application before using the create_sites command. The
create_box command must be used to to define the simulation box before using the create_sites_command.

As explained above, the global keyword only affects generation of site IDs. It can only be used for on-lattice
applications, for style = box, and for simple regular lattices. The latter requirement means lattice = line (line/2n)
for 1d models, square (sq/4n or sq/8n) for 2d, or simple cubic (sc/6n or sc/26n) for 3d.

Related commands:

lattice, region, create_box, read_sites

Default: none

170

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

deep_length command

Syntax:

deep_length L

L = Maximum length of the deep melt pool ellipsoid used in the keyhole weld model•

Examples:

deep_length 20

Description:

This command is used in the keyhole mode of the potts/weld_jom application to define the maximum length of
the deep ellipsoid, which extends through the entire z-axis of the domain.

Restrictions:

This command can only be used as part of the app_style potts/weld_jom application.

It must be a positive value.

Related commands:

deep_width, ellipsoid_depth

Default: 1/4 * yhi

171

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

deep_width command

Syntax:

deep_width W

W = Maximum width of the deep ellipsoid used in the keyhole weld model•

Examples:

deep_width 30

Description:

This command is used in the keyhole mode of the potts/weld_jom application to define the maximum width of the
deep ellipsoid, which extends through the entire z-axis of the domain.

Restrictions:

This command can only be used as part of the app_style potts/weld_jom application.

It must be a positive value.

Related commands:

deep_length, ellipsoid_depth

Default: 1/3 * xhi

172

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

deposition command

Syntax:

deposition mode rate dirx diry dirz d0 lo hi

mode = off or event or batch•
rate = rate of atom deposition (atom/sec units)•
dirx,diry,dirz = vector in direction of incidence•
d0 = capture distance (distance units)•
lo,hi = min/max coordination number of deposition site•

Examples:

deposition event 1.0 0 -1 0 1.0 1 4
deposition batch 1.0 1 1 -1 1.0 3 10
deposition off

Description:

This command invokes deposition events in an on-lattice diffusion model, specified by the app_style diffusion
command.

If *mode* is set to *off*, then no additional arguments are used. Deposition is turned off. This can be useful when
deposition previously took place, but is now turned off.

If *mode* is set to *event*, then deposition events will be performed in tandem with diffusive hop events in the
KMC diffusion model. This option only works when running on a single processor.

If *mode* is set to *batch*, then deposition events will be performed as a batch at the end of each KMC loop over
sectors. Thus diffusive events and deposition events are separated. This option only works when running in
parallel on multiple processors.

For each trial deposition, a random starting point at the top of the simulation box is selected (top y surface in 2d,
top z surface in 3d). The atom trajectory (straight line) is traced along its incident direction which is specified by
(dirx,diry,dirz) and need not be a unit vector. However, diry < 0 and dirz = 0 is required for 2d models. Similarly,
dirz < 0 is required for 3d models.

Candidate deposition sites are vacant sites within a perpendicular distance d0 from the incident trajectory which
also have a current coordination number C such that lo <= C <= hi. Note that d0 is specified in distance units
which will depend on how the lattice of sites is defined via the lattice command. For example, if the lattice
constant or box size in specified in Angstroms, then the distance units for this command are Angstroms as well.

If the inicident angle is not vertical, then periodic images of the starting point with associated incident trajectories
are considered and the d0 capture distance is applied to whichever trajectory the candidate site is closest to, in a
perpendicular sense. This means x-periodicity in 2d and x- and y-periodicity in 3d.

For the set of candidate sites, the selected deposition site is the one closest to the starting point, measuring the
distance from the projected perpendicular point to the starting point.

173

https://spparks.github.io

IMPORTANT NOTE: App_style diffusion defines valid sites as vacant (site value = 1) or occupied (value = 2).
When performing deposition, a row (2d) or plane (3d) of sites at the top of the system (where the deposited atoms
are incident from) should be set to a value of 3. This prevents those sites from being considered as candidate
deposition sites, due to them being neighbors of occupied sites at the bottom of the system in a periodic sense.

Restrictions:

This command can only be used as part of the app_style diffusion application.

Related commands:

ecoord, barrier

Default:

The default is mode = off.

174

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

diag_style array command

Syntax:

diag_style array value mode value mode ...

array = style name of this diagnostic•
value = iN or dN•
mode = min or max or mean or sum

Examples:

diag_style array i2 mean
diag_style array d1 sum d1 min d1 max

Description:

The array diagnostic computes the mean, sum, min, or max for a per-site lattice value in the system. The
diagnostic can operate on one or more values in one or more modes (min, max, mean, sum). The results are
printed as stats output via the stats command.

Restrictions:

This diagnostic can only be used for on-lattice applications.

Related commands:

diag_style, stats

Default: none

•

175

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

diag_style cluster command

Syntax:

diag_style cluster keyword value keyword value ...

cluster = style name of this diagnostic•
zero or more keyword/value pairs may be appended•
see the diag_style command for additional keyword/value pairs that can be appended to a diagnostic
command and which must appear before these keywords

•

keyword = filename or dump

filename value = name
 name = name of file to write clustering results to

dump value = style filename
 style = standard or opendx
 filename = file to write viz data to

•

Examples:

diag_style cluster
diag_style cluster stats no delt 1.0 filename cluster.a.0.1.dat dump opendx cluster.a.0.1.dump

Description:

The cluster diagnostic computes a clustering analysis on all lattice sites in the system, identifying geometric
groupings of identical spin values, e.g. a grain in a grain growth model. The total number of clusters is printed as
stats output via the stats command.

Clustering uses a connectivity definition provided by the application (e.g. sites are adjacent and have same spin
value) to identify the set of connected clusters.

Clustering can only be used with the lattice application, and applications based on it.

The filename keyword allows an output file to be specified. Every time the cluster analysis is performed, the key
properties of each cluster are appended to this file. The output format is:

Clustering Analysis for Lattice (diag_style cluster)•
nglobal = total number of sites•
nprocs = number of processors•

Time = time•
ncluster = total number of clusters•
id ivalue dvalue size cx cy cz xlo xhi ylo yhi zlo zhi•
cluster id ivalue dvalue size cx cy cz xlo xhi ylo yhi zlo zhi•

cluster_id is an arbitrary integer assigned uniquely to each cluster. It will be different for different numbers of
processors.

ivalue is an application-specific integer associated with each cluster. For lattice applications, it is the spin value of
all sites in the cluster. dvalue is an application-specific double associated with each cluster. For most lattice

176

https://spparks.github.io

applications it is zero. size is the numbers of sites in the cluster.

Cx, cy, cz are the coordinates of the centroid of the cluster i.e. the average of the x, y, and z coordinate of all the
sites in the cluster. For clusters than are of finite extent in a periodic dimension, the average is over the contiguous
sites in a single periodic image, and the centroid is shifted by multiples of the period so as to lie inside the box.
For clusters of infinite extent in x, y, or z, the centroid is not defined, so the clustering algorithm will produce a
result based on some arbitrary splitting of the cluster into finite periodic repeat units. Except for this last case, the
calculated cx, cy, or cz will be not be affected by the numbers of processors used in the calculation.

Xlo, xhi, ylo, yhi, zlo, and zhi are the maximum and minimum x, y, and z coordinates of sites in cluster, in other
words the extent of the bounding box of the cluster. For clusters that are of finite extent in a periodic dimension,
the max and min are taken over the contiguous sites in a single periodic image, and each of the 6 output values are
then shifted by multiples of the period so as to lie inside the box. For clusters of infinite extent in x, y, or z, the
max and min values in those directions are not defined. The clustering algorithm will produce a result based on
some arbitrary splitting of the cluster into finite periodic repeat units. Except for this last case, the max and min
values will be not be affected by the numbers of processors used in the calculation.

The dump keyword causes the cluster ID for each site to be printed out in snapshot format which can be used for
visualization purposes. The cluster IDs are arbitrary integers such that two sites have the same ID if and only if
they belong to the same cluster. The standard setting generates LAMMPS-style. For cluster2d and cluster3d
styles only two values are printed for each site: site index and cluster ID. For the cluster style, three additional
values are printed: the x, y, and z coordinate of the site (for 2d lattices, z=0). These files can be visualized with
various tools in the LAMMPS package and the Pizza.py package.

The opendx keyword generates a set of files that can be read by the OpenDX script called aniso0.net to visualize
the clusters in 3D. The filenames are composed of the input filename, followed by a sequential number, followed
by '.dx'. Because the OpenDX format assumes a particular ordering of the sites, the opendx style can only be used
with square and simple cubic lattices.

Restrictions:

This diagnostic can only be used for on-lattice applications.

Applications need to provide push_connected_neighbors() and connected_ghosts() functions which are called by
this diagnostic. If they are not defined, SPPARKS will print an error message.

Related commands:

diag_style, stats

Default: none

177

http://lammps.sandia.gov
https://lammps.github.io/pizza

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

diag_style diffusion command

Syntax:

diag_style diffusion keyword value keyword value ...

diffusion = style name of this diagnostic zero or more keyword/value pairs may be appended

see the diag_style command for keyword/value pairs that can be appended to a diagnostic command•

Examples:

diag_style diffusion

Description:

The diffusion diagnostic calculates outputs various statistics about the different events that have occurred in a
cummulative sense since the simulation began. These values are printed as stats output via the stats command.

There are 4 kinds of events tallied, not all of which may occur depending on the parameters used in defining the
app_style diffusion model.

successful deposition event•
failed deposition event•
1st neighbor hop•
2nd neighbor hop•

A successful deposition event is one that resulted in an atom added to the lattice. A failed deposition event is
one that was attempted, but no suitable site could be found and thus no atom was added. A 1st neighbor hop is
a diffusion hop from a lattice site to a nearest-neighbor vacancy. A 2nd neighbor hop is a Schwoebel hop from
a lattice site to a 2nd nearest-neighbor vacancy. See the app_style diffusion command for more info on how
Schwoebel hops occur.

Restrictions:

This diagnostic can only be used with the app_style diffusion application.

Related commands:

diag_style, stats

Default: none

•

178

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

diag_style energy command

Syntax:

diag_style energy keyword value keyword value ...

energy = style name of this diagnostic•
see the diag_style command for additional keywords that can be appended to a diagnostic command•

Examples:

diag_style energy

Description:

The energy diagnostic computes the total energy of all lattice sites in the system. The energy is printed as stats
output via the stats command.

Restrictions:

This diagnostic can only be used for on-lattice applications.

Related commands:

diag_style, stats

Default: none

179

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

diag_style erbium command

Syntax:

diag_style erbium keyword value keyword value ...

erbium = style name of this diagnostic•
zero or more keyword/value pairs may be appended•
see the diag_style command for additional keyword/value pairs that can be appended to a diagnostic
command and which must appear before these keywords

•

keyword = list

list values = er or h or he or vac or events or sN or dN or tN
er,h,he,vac = counts of how many lattice sites of this type exist
events = total # of events for all sites
sN,dN,tN = cummulative # of events for this reaction that have occurred

•

Examples:

diag_style erbium stats yes list h he vac events s1 d1 t2

Description:

The erbium diagnostic prints out statistics about the system being modeled by app_style erbium. The values will
be printed as part of stats output.

Following the list keyword you can list one or more of the listed values, in any order.

The er, h, he, and vac values will print counts of the number of current sites of each type. The events value will
print the total # of possible events that can occur as defined by the event command, given the current state of the
lattice, summed over all sites.

The sN, dN, and tN values refer to a tally of events that have actually occurred, as defined by the event command.
The letter "s" means reactions involving a single site, "d" means double reactions involving 2 sites, and "t" means
triple reactions involving 3 sites. The N refers to which reaction (from 1 to the number of that type of reaction).
I.e. "t2" means the 2nd 3-site reaction defined in your input script. Note that the values printed for sN, dN, and tN
are cummulative counts of events from the beginning of the simulation run.

Restrictions:

This command can only be used as part of the app_style erbium application.

Related commands:

diag_style, stats

Default: none

180

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

diag_style propensity command

Syntax:

diag_style propensity keyword value keyword value ...

propensity = style name of this diagnostic zero or more keyword/value pairs may be appended

see the diag_style command for keyword/value pairs that can be appended to a diagnostic command•

Examples:

diag_style propensity

Description:

The propensity diagnostic computes the total propensity of all lattice sites in the system. The propensity is
printed as stats output via the stats command.

The propensity can be thought of as the relative probablity of a site site to perform a KMC event. Note that if
you are doing Metropolis MC and not kinetic MC, no propensity is defined.

Restrictions:

This diagnostic can only be used for on-lattice applications.

This diagnostic can only be used for KMC simulations where a solver is defined.

Related commands:

diag_style, stats

Default: none

•

181

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

diag_style sinter_avg_neck_area command

Syntax:

diag_style sinter_avg_neck_area keyword value keyword value ...

sinter_avg_neck_area = style name of this diagnostic•
see the diag_style command for additional keywords that can be appended to a diagnostic command•

Examples:

diag_style sinter_avg_neck_area

Description:

The sinter average neck area diagnostic computes the average neck area in the powder compact simulated. The
average neck area is printed as stats output via the stats command.

Restrictions:

This diagnostic can only be used for the sintering application.

Related commands:

diag_style, stats

Default: none

182

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

diag_style sinter_density command

Syntax:

diag_style sinter_density keyword value keyword value ...

sinter_density = style name of this diagnostic•
see the diag_style command for additional keywords that can be appended to a diagnostic command•

Examples:

diag_style sinter_density

Description:

The sinter density diagnostic computes the density of the powder compact simulated. The calculation is done over
the 1/27th central parallelepiped in order to avoid border effects. The density is printed as stats output via the stats
command.

Restrictions:

This diagnostic can only be used for the sintering application.

Related commands:

diag_style, stats

Default: none

183

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

diag_style sinter_free_energy_pore command

Syntax:

diag_style sinter_free_energy_pore keyword value keyword value ...

sinter_free_energy_pore = style name of this diagnostic•
see the diag_style command for additional keywords that can be appended to a diagnostic command•

Examples:

diag_style sinter_free_energy_pore

Description:

The sinter free energy pore diagnostic computes the surface area of the pores in the powder compact simulated.
The calculation is done over the 1/27th central parallelepiped in order to avoid border effects. To obtain a measure
independent of the size of the simulation the value computed is normalized by dividing over the volume used. The
pore free energy is printed as stats output via the The density is printed as stats output via the stats command.

Restrictions:

This diagnostic can only be used for the sintering application.

Related commands:

diag_style, stats

Default: none

184

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

diag_style sinter_pore_curvature command

Syntax:

diag_style sinter_pore_curvature keyword value keyword value ...

sinter_pore_curvature = style name of this diagnostic•
see the diag_style command for additional keywords that can be appended to a diagnostic command•

Examples:

diag_style sinter_pore_curvature

Description:

The sinter pore curvature diagnostic computes the mean integral curvature of the pores in the powder compact
simulated. In addition the triple line length is also computed. The calculation is done over the 1/27th central
parallelepiped in order to avoid border effects. The pore curvature and the triple line length are printed as stats
output via the stats command.

The method used to measure pore curvature is described in detail in "On Sintering Stress in Complex Powder
Compacts", Cristina G. Cardona, Veena Tikare, Burton R. Patterson and Eugene Olevsky, J. Am. Ceram. Soc.,
1-11 (2012)

Restrictions:

This diagnostic can only be used for the sintering application.

Related commands:

diag_style, stats

Default: none

185

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

diag_style command

Syntax:

diag_style style keyword value keyword value ...

style = cluster or diffusion or energy or propensity•
zero or more keyword/value pairs may be appended•
keyword = stats or delay or delt or logfreq or loglinfreq

stats values = yes or no
 yes/no = provide output to stats line

delay values = tdelay
 tdelay = delay evaluating diagnostic until at least this time

delt values = delta
 delta = time increment between evaluations of the diagnostic (seconds)

logfreq or loglinfreq values = N factor
 N = number of repetitions per interval
 factor = scale factor between intervals

•

see doc pages for individual diagnostic commands for additional keywords - diagnostic-specific keywords
must come after any other standard keywords

•

Examples:

diag_style cluster stats no delt 1.0
diag_style energy

Description:

This command invokes a diagnostic calculation. Currently, diagnostics can only be defined for on-lattice
applications. See the app_style command for an overview of such applications.

The diagnostics currently available are:

array = statistics of lattice values•
cluster = grain size statistics for general lattices•
diffusion = statistics on diffusion events•
energy = energy of entire system for general lattices•
propensity = propensity of entire system for general lattices•

Diagnostics may provide one or more values that are appended to other statistical output and printed to the screen
and log file via the stats command. This is stats output. In addition, the diagnostic may write more extensive
output to its own files if requested by diagnostic-specific keywords.

The stats keyword controls whether or not the diagnostic appends values to the statistical output. If stats is set to
yes, then the frequency of the stats output will determine when the diagnostic is called, and none of the other
keywords related to how often the diagnostic is called can be used.

If stats is set to no, then the other keywords related to how often the diagnostic is called may be used. The delt
keyword specificies Delta = the interval of time between each diagnostic calculation.

186

https://spparks.github.io

Similarly, the logfreq and loglinfreq keywords will cause the diagnostic to run at progressively larger intervals
during the course of a simulation. There will be N outputs per interval where the size of each interval scales up by
factor each time. Delta is the time between outputs in the first (smallest) interval. See the stats command for more
information on how the output times are specified. See the stats command for more information on how the
intervals are specified.

If N is specified as 0, then this will turn off logarithmic intervals, and revert to regular intervals of delta.

The delay keyword specifies the shortest time at which the diagnostic can be evaluated. This is useful if it is
inconvenient to evaluate the diagnostic at time t=0.

Restrictions: none

Related commands:

stats

Default:

The stats setting is yes.

187

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

diffusion/multiphase command

Syntax:

diffusion/multiphase keyword args

keyword = phase or pin or weight

phase arg = ID
 ID = phase label (integer)

pin arg = ID
 ID = phase label (integer) for a pinned phase

weight args = w pair i j
 w = weight applied between phases i and j
 pair = required keyword
 i,j = pair of phase labels

•

Examples:

diffusion/multiphase pin 1
diffusion/multiphase phase 2
diffusion/multiphase phase 3
diffusion/multiphase weight 0.5 pair 2 3

Description:

This command is used with the app_style diffusion/multiphase application.

The command is typically used multiple times, each time with one of 3 keywords.

The command must be used once for each defined phase, either with the phase keyword or the pin keyword.

The phase keyword defines a mobile phase (which can diffuse) with an integer phase label.

The pin keyword defines an immobile phase with an integer phase label. Pinned sites never exchange values with
another site, i.e. the sites in a pinned phase do not diffuse.

There is no limit to the number of phases which can be defined. However there should always be two or more
non-pinned phases in your model. Otherwise no diffusive exchanges between sites with different phases will take
place.

The weight keyword specifies a pairwise bond energy (weight) between two neighboring sites with the specified
I,J phase values. The default weight for all pairs of unlike phases is 1.0. A weight specified for an I,J pair will also
be applied to J,I. Note that a weight cannot be assigned to an I,I pair; a pair of I,I neighbors do not contribute to
the energy of either site.

In the 4 example lines above, 3 phases are defined. Phase 1 is pinned, phases 2 and 3 are not. A weight of 0.5 is
applied to the 2,3 pair of phases. The weights for the 1,2 and 1,3 pairing are the default values of 1.0.

Restrictions:

This command can only be used with the app_style diffusion/multiphase application.

188

https://spparks.github.io

Related commands:

app_style diffusion/multiphase

Default:

When pairwise weights are not defined, weights values default to 1.0.

189

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

dimension command

Syntax:

dimension N

N = 1 or 2 or 3•

Examples:

dimension 2

Description:

Set the dimensionality of the simulation for spatial on-lattice or off-lattice models. By default SPPARKS runs 3d
simulations. To run a 1d or 2d simulation, this command should be used prior to setting up a simulation box via
the create_box or read_sites commands.

Restrictions:

This command must be used before the simulation box is defined by a read_sites or create_box command.

Related commands: none

Default:

dimension 3

190

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

dump command

dump image command

Syntax:

dump dump-ID style delta filename field1 field2 ...

dump-ID = user-assigned name for the dump•
style = text or sites or vtk or stitch or image•
delta = time increment between dumps (seconds)•
filename = name of file to dump snapshots to•
fields = list of arguments for a particular style

text or sites or stitch or vtk fields =
id or site or x or y or z or
energy or propensity or iN or dN

image fields = discussed on dump image doc page

•

Examples:

dump 1 text 0.25 tmp.dump
dump 1 text 1.0 my.dump id site x y z
dump 1 sites 1.0 my.sites.* id site i2 i3
dump 1 vtk 1.0 my.vkt.* site
dump 1 stitch 1.0 stitch_file.st site
dump mydump text 5.0 snap.ising id site energy i1

Description:

The text, sites, vtk, and stitch styles dump a snapshot of site values to one or more files at time intervals of delta
during a simulation. The image style creates a JPG or PPM image file of the site configuration every at time
intervals of delta, as discussed on the dump image doc page. The remainder of this page describes the text, sites,
vtk, and stitch styles.

The text style dump file is in the format of a LAMMPS dump file which can thus be read-in by the Pizza.py
toolkit, converted to other formats, or used for visualization.

The sites style dump file is in the same format that is read by the read_sites command. The dumped files can thus
be used as restart files to continue a simulation, using the read_sites command.

The vkt style dump file is in the VTI format that can be read by various visualization programs, including
ParaView.

The stitch style dump file is in an SQLite format which can be read by the set stitch command or auxiliary tools
provided with the Stitch library in lib/stitch. See the examples/stitch dir for examples of SPPARKS scripts that
read and write stitch files.

As described below, the filename determines the kind of output (text or binary or gzipped, one big file or one per
timestep, one big file or one per processor or one file per group of processors). The fields included in each
snapshot are obtained from the application. Only on-lattice and off-lattice applications support dumps since they
are spatial in nature. More that one dump command and output file can be used during a simulation by giving

191

https://spparks.github.io
http://lammps.sandia.gov
https://lammps.github.io/pizza
https://lammps.github.io/pizza
http://www.paraview.org

each a unique dump-ID and unique filename.

IMPORTANT NOTE: When running in parallel, unless the dump_modify sort option is invoked, the lines of
per-site information written to dump files will be in an indeterminate order, i.e. not ordered by site ID. This is
because the sites owned by each processor are written in a contiguous chunk. The ordering will be the same in
every snapshot.

Dump snapshots will only be written on timesteps where the system time is a multiple of delta. Depending on
now time advances in the application and solver (kinetic MC or rejection MC), the system time for a snapshot
may be somewhat larger than an exact multiple of delta. I.e. SPPARKS will trigger the snapshot on the first
timestep that the system time advances to a value >= a new delta interval.

Note that this means snapshots will not be written at the beginning or very end of a run, if the system time is not a
multiple of delta. If multiple runs are performed, the same snapshot will not be written at the end of one run and
the beginning of the next.

The dump_modify command can be used to alter the times at which snapshots are written out as well as define a
subset of sites to write out. See the delay, delta, logfreq, loglinfreq, and tol keywords of the dump_modify
command for details.

For the text format file, each snapshot begins with lines like these:

ITEM: TIMESTEP TIME
100 3.23945

The first field "100" denotes which snapshot it is, numbered as 0,1,2,etc. Snapshot 0 is thus typically for the state
of the system before the first run command. The second field "3.23945" is the simualtion time when the snapshot
is generated.

IMPORTANT NOTE: The second simulation time field is an addition to the standard LAMMPS-style header for
each snapshot.

The next lines are like these:

ITEM: NUMBER OF ATOMS
314159

The word "ATOMS" is LAMMPS syntax, but simply means the number of sites in a SPPARKS simulation. The
number "314159" will reflect any reduction in dumped site count due to the dump_modify command.

The next lines are like these:

ITEM: BOX BOUNDS
0 50
0 50
0 50

which denote the simulation box size in x,y,z. E.g, the last line is zlo and zhi.

The next line is like this:

ITEM: ATOMS id type x y z

192

which begins the per-site information. One line per site follows. The trailing "id type x y z" are labels for the
per-site columns, using the requested fields in the dump command. The word "site" is converted to "type" so as to
be compatible with how LAMMPS-style dump files are visualized. The LAMMPS default is to use the "type"
value to color the object (e.g. a sphere) drawn at each site.

For the sites format file, each snapshot begins with lines like these.

Site file written by dump sites 2 command at time: 3 3.01

3 dimension
1000 sites
id site columns
0 10 xlo xhi
0 10 ylo yhi
0 10 zlo zhi

This is followed by a "Values" section of per-site info, with one line per site. Each line begins with a site ID,
followed by the per-site values listed in the "columns" header line

See the "read_sites" command for more explanation of this format. The two time fields at the end of the first
(comment) line are the same TIME info described above the the text style format. The "id site" keywords that
preceed "columns" define what per-site values are included in the file. The keyword "id" must be the first value in
each per-site line. One or more per-site values can follow. Note that it only makes sense to include the "site" or
"iN" or "dN" fields as output values, since the read_sites command can only process those as input.

IMPORTANT NOTE: For this style, a filename with the "*" wildcard must be used so that a different file is
written for each snapshot. The is because the read_sites command only reads a file with a single snapshot.

IMPORTANT NOTE: This style of dump command will not write "Sites" or "Neighbors" sections to the sites file.
When using the sites file to continue a simulation, it is assumed that the restart script will define the sites and their
neighbors in an alternate way, e.g. via the "create_box" and "create_sites" commands. Or by reading a separate
sites file with that information via an earlies "read sites" command.

IMPORTANT NOTE: You must write information for all sites to the sites style dump file. E.g. you cannot use the
dump_modify command to limit the output to a subset of sites. This is because the read_sites requires information
for all sites in the system.

For the vtk format file, each snapshot is wrapped with a VTK-specific header and footer. Only a single field can
be listed, which must be a per-site value, e.g. "site" or "iN" or "dN".

A VTK-compatible visualization program will read the information in the dump snapshot and display one object
(e.g. a cube or sphere) at each point on a regular 1d or 2d or 3d lattice.

IMPORTANT NOTE: Use of the "dump_modify vtk" command is required to use this dump style. This is to
make additional simulation-specific settings included in the VTK-compatible dump file.

IMPORTANT NOTE: The vtk style can only be used to dump sites that are on a simple, regular lattice. In 1d, this
is a "line/2n" lattice. In 2d, this is a square lattice, "sq/4n" or "sq/8n". In 3d, this is a simple cubic lattice, "sc/6n"
or "sc/26n". See the lattice and create_sites commands for details on these lattice types.

If a lattice command was used to create sites, then SPPARKS will check that the lattice is one of these valid
styles. However, if a read_sites command was used to define sites, e.g. by reading a previous sites-style dump file
to continue a simulation, then no lattice is defined and SPPARKS cannot check this. It is up to you to insure the

193

VTK output meets this restriction. Otherwise a visualization program may not be able to render a useful image.

IMPORTANT NOTE: The dump_modify sort command must be used to insure the per-site info for the regular
lattice is written to the dump file in the regular ordering that VTK expects.

IMPORTANT NOTE: For this style, a filename with the "*" wildcard must be used so that a different file is
written for each snapshot.

As mentioned above, the stitch format file is in an SQLite format.

In principle, any tool or library which reads SQLite files should be able to read a stitch file, but that is not
recommended, For performance reasons, the Python or C API defind by the Stitch library should be used for
reading and writing stitch files. SPPARKS itself reads stitch files using the set stitch command. Only a filename
representing a single file (no wildcards) can be used with this style. A time stamp and associated SPPARKS
simulation time for each snapshot is written into the SQLite file.

Note that style stitch can only be used for simple regular lattices. This means lattice = line (line/2n) for 1d models,
square (sq/4n or sq/8n) for 2d, or simple cubic (sc/6n or sc/26n) for 3d. See the create_sites command for more
details. Many of the dump_modify options are ignored for this style. Snapshots for the entire lattice are written to
the file. More info about stitch dump files will be added to this doc page later.

Only the specified fields will be included in the dump file for each site. If no fields are listed, then a default set of
fields are output, namely "id site x y z".

These are the possible field values which may be specified.

The id is a unique integer ID for each site.

The site, iN, and dN fields specify a per-site value. Site is the same as i1. iN fields are integer values for integer
fields 1 to N; dN fields are floating-point values. The application defines how many integer and floating-point
values are stored for each site.

The x, y, z values are the coordinates of the site.

The energy value is what is computed by the energy() function in the application. Likewise for the propensity
value which can be thought of as the relative probablity for that site to perform a KMC event. Note that if the
application only performs rejection KMC or Metropolis MC, then no propensity is defined.

The specified filename determines how the dump file(s) is written. The default is to write one large text file,
which is opened when the dump command is invoked and closed when an undump command is used or when
SPPARKS exits.

IMPORTANT NOTE: Not all dump styles support all the filename options described next. See the Restrictions
section below for details.

Dump filenames can contain two wildcard characters. If a "*" character appears in the filename, then one file per
snapshot is written and the "*" character is replaced with the timestep value. This is a counter which starts at 0,
and is incremented for each snapshot. For example, tmp.dump.* becomes tmp.dump.0, tmp.dump.1, tmp.dump.2,
etc. The initial value for this counter defaults to 0, but can be reset via the dump_modify first command.

If a "%" character appears in the filename, then one file is written for each processor and the "%" character is
replaced with the processor ID from 0 to P-1. For example, tmp.dump.% becomes tmp.dump.0, tmp.dump.1, ...

194

tmp.dump.P-1, etc. This creates smaller files and can be a fast mode of output on parallel machines that support
parallel I/O for output.

Note that the "*" and "%" characters can be used together to produce a large number of small dump files!

If the filename ends with ".bin", the dump file (or files, if "*" or "%" is also used) is written in binary format. A
binary dump file will be about the same size as a text version, but will typically write out much faster. Of course,
when post-processing, you will need to convert it back to text format, using your own code to read the binary file.
The format of the binary file can be understood by looking at the src/dump.cpp file.

If the filename ends with ".gz", the dump file (or files, if "*" or "%" is also used) is written in gzipped format. A
gzipped dump file will be about 3x smaller than the text version, but will also take longer to write.

Restrictions:

This command can only be used as part of on-lattice or off-lattice applications. See the app_style command for
further details.

The stitch style is part the STITCH package. It is only enabled if SPPARKS was built with that package. See
Section 2.3 for more info on how to do this.

For the filename specified for the sites or vtk styles, a "*" wildcard must be used and a "%" wildcard cannot be
used. Likewise a "*.bin" suffix cannot be used, but a "*.gz" suffix can be used.

To write gzipped dump files, you must compile SPPARKS with the -DSPPARKS_GZIP option - see the Making
SPPARKS section of the documentation.

Related commands:

dump_one, dump_modify, undump, stats

Default: none

195

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

dump image command

Syntax:

dump dump-ID image delta filename color diameter keyword value ...

ID = user-assigned name for the dump•
image = style of dump command (other style text is discussed on the dump doc page)•
delta = time increment between dumps (seconds)•
filename = name of file to write image to•
color = attribute that determines color of each site•
diameter = attribute that determines size of each site•
zero or more keyword/value pairs may be appended•
keyword = shape or sdiam or bdiam or crange or drange or size or view or center or up or zoom or persp
or box or axes or shiny or ssao

shape value = sphere or cube
sdiam value = number = numeric value for site diameter (distance units)
boundary values = attribute width

 attribute = attribute to use for drawing boundaries between sites
 width = width of boundary cylinders

crange values = lo hi
 lo,hi = lower and upper bound (inclusive) of integer color attribute

drange values = lo hi
 lo,hi = lower and upper bound (inclusive) of integer diameter attribute

size values = width height = size of images
 width = width of image in # of pixels
 height = height of image in # of pixels

view values = theta phi = view of simulation box
 theta = view angle from +z axis (degrees)
 phi = azimuthal view angle (degrees)
 theta or phi can be a variable (see below)

center values = flag Cx Cy Cz = center point of image
 flag = "s" for static, "d" for dynamic
 Cx,Cy,Cz = center point of image as fraction of box dimension (0.5 = center of box)
 Cx,Cy,Cz can be variables (see below)

up values = Ux Uy Uz = direction that is "up" in image
 Ux,Uy,Uz = components of up vector
 Ux,Uy,Uz can be variables (see below)

zoom value = zfactor = size that simulation box appears in image
 zfactor = scale image size by factor > 1 to enlarge, factor <1 to shrink
 zfactor can be a variable (see below)

persp value = pfactor = amount of "perspective" in image
 pfactor = amount of perspective (0 = none, <1 = some, > 1 = highly skewed)
 pfactor can be a variable (see below)

box values = yes/no diam = draw outline of simulation box
 yes/no = do or do not draw simulation box lines
 diam = diameter of box lines as fraction of shortest box length

axes values = yes/no length diam = draw xyz axes
 yes/no = do or do not draw xyz axes lines next to simulation box
 length = length of axes lines as fraction of respective box lengths
 diam = diameter of axes lines as fraction of shortest box length

shiny value = sfactor = shinyness of spheres and cylinders
 sfactor = shinyness of spheres and cylinders from 0.0 to 1.0

ssao value = yes/no seed dfactor = SSAO depth shading
 yes/no = turn depth shading on/off
 seed = random # seed (positive integer)
 dfactor = strength of shading from 0.0 to 1.0

•

196

https://spparks.github.io

Examples:

dump myDump image 100 dump.*.jpg site site
dump myDump image 100 dump.*.jpg energy i2

Description:

Dump a high-quality ray-traced image of the sites at time intervals of delta during a simulation as either a JPG or
PPM file. A series of such images can easily be converted into an animated movie of your simulation; see further
details below. The text dump style writes snapshots of numerical data asociated with sites, as discussed on the
dump doc page.

Here are two sample images, rendered as 1024x1024 JPG files. The left image is a million-site lattice; the right
image is half a billion sites. Click to see the full-size images:

The dump_modify command can be used to alter the times at which images are written out as well as alter what
sites are included in the image.

The filename suffix determines whether a JPG or PPM file is created. If the suffix is ".jpg" or ".jpeg", then a JPG
file is created, else a PPM file is created, which is a text-based format. To write out JPG files, you must build
SPPARKS with a JPEG library. See this section of the manual for instructions on how to do this.

Dump image filenames must contain a wildcard character "*", so that one image file per snapshot is written. The
"*" character is replaced with the timestep value. For example, tmp.dump.*.jpg becomes tmp.dump.0.jpg,
tmp.dump.10000.jpg, tmp.dump.20000.jpg, etc. Note that the dump_modify pad command can be used to insure
all timestep numbers are the same length (e.g. 00010), which can make it easier to convert a series of images into
a movie in the correct ordering.

The color and diameter settings determine the color and size of sites rendered in the image. They can be any
attribute defined for the dump text command, including site. Note that the diameter setting can be overridden with
a numeric value by the optional sdiam keyword, in which case you can specify the diameter setting with any valid
atom attribute.

If an integer attribute such as site or i2 is specified for the color setting, then you must use the optional crange
keyword to specify the range of integer values that are allowed, from lo to hi. The color of each site is determined
by the integer value. By default the mapping of values to colors is done by looping over the set of pre-defined
colors listed with the dump_modify command, and assiging the first one to value lo, the next to value lo+1, and so
on, repeating the assignment in a loop if the number of values exceeds the number of pre-defined colors. This

197

mapping can be changed by the dump_modify scolor command.

If a floating point attribute such as energy or d1 is specified for the color setting, then the site's attribute will be
associated with a specific color via a "color map", which can be specified via the dump_modify command. The
basic idea is that the attribute will be within a range of values, and every value within the range is mapped to a
specific color. Depending on how the color map is defined, that mapping can take place via interpolation so that a
value of -3.2 is halfway between "red" and "blue", or discretely so that the value of -3.2 is "orange".

If an integer attribute such as site or i2 is specified for the diameter setting, then you must use the optional drange
keyword to specify the range of integer values that are allowed. The size of each site is determined by the integer
value. By default all values has diameter 1.0. This mapping can be changed by the dump_modify sdiam
command.

If a floating point attribute such as energy or d1 is specified for the diameter setting, then the site will be rendered
using the site's attribute as the diameter. If the per-site value <= 0.0, then the site will not be drawn.

The various keywords listed above control how the image is rendered. As listed below, all of the keywords have
defaults, most of which you will likely not need to change. The dump modify also has options specific to the
dump image style, particularly for assigning colors to atoms, bonds, and other image features.

The shape keyword can be specied with a value of sphere or cube, to draw either a sphere or cube at each site.
Cubes typically only make sense for simple square or cubic lattices with regular spacing, so that the cubes will tile
the 2d or 3d space without overlapping. The diameter specified for each site will be the diamter of the sphere or
the edge length of the cube.

The sdiam keyword allows you to override the diameter setting with a specified numeric value. All sites will be
drawn with that diameter.

The boundary keyword enables drawing of boundaries bewteen neighboring sites that have a different value of
the specified attribute. This is a way to visualize the boundary between two contiguous groups of sites based on
an attribute that is different for the two groups, even if the sites themselves in the 2 groups are rendered with the
same color (due to the value of their color setting).

The specified attribute can be any attribute defined for the dump text command, including site. A boundary is
only drawn between site pairs (I,J), where site I is rendered by the dump image command, site J is one of its
nearest neighbors, and the value of the specified attribute is different for the 2 sites.

The boundary itself is drawn as 4 cylinders which outline a square. If the 2 adjacent sites are rendered as cubes
(via the shape setting), then the square is the face common to the 2 adjacent cubes. The diameter of the cylinders
is set via the bdiam keyword. The color of the cylinders can be set via the dump_modify boundcolor command.

The crange keyword must be used if the specified color setting is an integer attribute such as site or i2. The lo and
hi values are the range of values that the attribute can have. For example, if spins in a Potts model will range from
1 to 100 (inclusive), then lo and hi should be specified as 1 and 100.

Note that internally the code allocates a vector of color values that is of length hi-lo+1. Thus you may run out of
memory if crange encompasses N values and N is very large, e.g. 2 billion. In this case you should choose a
smaller N, e.g. 10000, and use the dump_modify cwrap yes command to wrap the 2 billion possible values into N
smaller values.

The drange keyword must be used if the specified diameter setting is an integer attribute such as site or i2, unless

198

the sdiam keyword is used, in which case the diameter setting is ignored. The lo and hi values are the range of
values that the attribute can have. For example, if the i2 attibute will take on the values -1, 0, or 1, then then lo
and hi should be specified as -1 and 1

Note that internally the code allocates a vector of diameter values that is of length hi-lo+1. Thus you may run out
of memory if drange encompasses N values and N is very large, e.g. 2 billion. In this case you should choose a
smaller N, e.g. 10000, and use the dump_modify dwrap yes command to wrap the 2 billion possible values into N
smaller values.

The size keyword sets the width and height of the created images, i.e. the number of pixels in each direction.

The view, center, up, zoom, and persp values determine how 3d simulation space is mapped to the 2d plane of the
image. Basically they control how the simulation box appears in the image.

All of the view, center, up, zoom, and persp values can be specified as numeric quantities, whose meaning is
explained below. Any of them can also be specified as an equal-style variable, by using v_name as the value,
where "name" is the variable name. In this case the variable will be evaluated on the timestep each image is
created to create a new value. If the equal-style variable is time-dependent, this is a means of changing the way
the simulation box appears from image to image, effectively doing a pan or fly-by view of your simulation.

The view keyword determines the viewpoint from which the simulation box is viewed, looking towards the center
point. The theta value is the vertical angle from the +z axis, and must be an angle from 0 to 180 degrees. The phi
value is an azimuthal angle around the z axis and can be positive or negative. A value of 0.0 is a view along the
+x axis, towards the center point. If theta or phi are specified via variables, then the variable values should be in
degrees.

The center keyword determines the point in simulation space that will be at the center of the image. Cx, Cy, and
Cz are speficied as fractions of the box dimensions, so that (0.5,0.5,0.5) is the center of the simulation box. These
values do not have to be between 0.0 and 1.0, if you want the simulation box to be offset from the center of the
image. Note, however, that if you choose strange values for Cx, Cy, or Cz you may get a blank image. Internally,
Cx, Cy, and Cz are converted into a point in simulation space. If flag is set to "s" for static, then this conversion is
done once, at the time the dump command is issued. If flag is set to "d" for dynamic then the conversion is
performed every time a new image is created. If the box size or shape is changing, this will adjust the center point
in simulation space.

The up keyword determines what direction in simulation space will be "up" in the image. Internally it is stored as
a vector that is in the plane perpendicular to the view vector implied by the theta and pni values, and which is also
in the plane defined by the view vector and user-specified up vector. Thus this internal vector is computed from
the user-specified up vector as

up_internal = view cross (up cross view)

This means the only restriction on the specified up vector is that it cannot be parallel to the view vector, implied
by the theta and phi values.

The zoom keyword scales the size of the simulation box as it appears in the image. The default zfactor value of 1
should display an image mostly filled by the atoms in the simulation box. A zfactor > 1 will make the simulation
box larger; a zfactor < 1 will make it smaller. Zfactor must be a value > 0.0.

The persp keyword determines how much depth perspective is present in the image. Depth perspective makes
lines that are parallel in simulation space appear non-parallel in the image. A pfactor value of 0.0 means that
parallel lines will meet at infininty (1.0/pfactor), which is an orthographic rendering with no persepctive. A

199

pfactor value between 0.0 and 1.0 will introduce more perspective. A pfactor value > 1 will create a highly
skewed image with a large amount of perspective.

IMPORTANT NOTE: The persp keyword is not yet supported as an option.

The box keyword determines how the simulation box boundaries are rendered as thin cylinders in the image. If no
is set, then the box boundaries are not drawn and the diam setting is ignored. If yes is set, the 12 edges of the box
are drawn, with a diameter that is a fraction of the shortest box length in x,y,z (for 3d) or x,y (for 2d). The color of
the box boundaries can be set with the dump_modify boxcolor command.

The axes keyword determines how the coordinate axes are rendered as thin cylinders in the image. If no is set,
then the axes are not drawn and the length and diam settings are ignored. If yes is set, 3 thin cylinders are drawn
to represent the x,y,z axes in colors red,green,blue. The origin of these cylinders will be offset from the lower left
corner of the box by 10%. The length setting determines how long the cylinders will be as a fraction of the
respective box lengths. The diam setting determines their thickness as a fraction of the shortest box length in x,y,z
(for 3d) or x,y (for 2d).

The shiny keyword determines how shiny the objects rendered in the image will appear. The sfactor value must be
a value 0.0 <= sfactor <= 1.0, where sfactor = 1 is a highly reflective surface and sfactor = 0 is a rough non-shiny
surface.

The ssao keyword turns on/off a screen space ambient occlusion (SSAO) model for depth shading. If yes is set,
then atoms further away from the viewer are darkened via a randomized process, which is perceived as depth. The
calculation of this effect can increase the cost of computing the image by roughly 2x. The strength of the effect
can be scaled by the dfactor parameter. If no is set, no depth shading is performed.

A series of JPG or PPM images can be converted into a movie file and then played as a movie using commonly
available tools.

Convert JPG or PPM files into an animated GIF or MPEG or other movie file:

a) Use the ImageMagick convert program.

% convert *.jpg foo.gif
% convert *.ppm foo.mpg

•

b) Use QuickTime.

Select "Open Image Sequence" under the File menu Load the images into QuickTime to animate them
Select "Export" under the File menu Save the movie as a QuickTime movie (*.mov) or in another format

•

c) Windows-based tool.•

If someone tells us how to do this via a common Windows-based tool, we'll post the instructions here.

Play the movie:

a) Use your browser to view an animated GIF movie.

Select "Open File" under the File menu Load the animated GIF file

•

b) Use the freely available mplayer tool to view an MPEG movie.

% mplayer foo.mpg

•

c) Use the Pizza.py animate tool, which works directly on a series of image files.•

200

https://lammps.github.io/pizza
https://lammps.github.io/pizza/doc/animate.html

a = animate("foo*.jpg")

d) QuickTime and other Windows-based media players can obviously play movie files directly.•

Restrictions:

To write JPG images, you must use a -DSPPARKS_JPEG switch when building SPPARKS and link with a JPEG
library. See the Making LAMMPS section of the documentation for details.

Related commands:

dump, dump_modify, undump

Default:

The defaults for the keywords are as follows:

shape = sphere•
sdiam = not specified (use diameter setting)•
boundary = no default•
crange = no default•
drange = no default•
size = 512 512•
view = 60 30 (for 3d)•
view = 0 0 (for 2d)•
center = s 0.5 0.5 0.5•
up = 0 0 1 (for 3d)•
up = 0 1 0 (for 2d)•
zoom = 1.0•
persp = 0.0•
box = yes 0.02•
axes = no 0.0 0.0•
shiny = 1.0•
ssao = no•

201

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

dump_modify command

Syntax:

dump_modify dump-ID keyword values ...

dump-ID = ID of dump to modify•
one or more keyword/value pairs may be appended•
these keywords apply to various dump styles•
keyword = delay or delta or fileper or first or flush or logfreq or loglinfreq or nfile or pad or region or sort
or thresh or tol or vtk

delay value = tdelay
 tdelay = delay dump until at least this time (seconds)

delta arg = dt
 dt = time increment between dumps (seconds)

fileper arg = Np
 Np = write one file for every this many processors

first arg = Nfirst
 Nfirst = index of first snapshot produced, useful when restarting

flush arg = yes or no
logfreq or loglinfreq values = N factor

 N = number of repetitions per interval
 factor = scale factor between intervals

nfile arg = Nf
 Nf = write this many files, one from each of Nf processors

pad arg = Nchar = # of characters to convert timestep to
region arg = region-ID or "none"
sort arg = off or id or N or -N

 off = no sorting of per-site lines within a snapshot
 id = sort per-site lines by atom ID
 N = sort per-site lines in ascending order by the Nth column
 -N = sort per-site lines in descending order by the Nth column

thresh args = attribute operation value
 attribute = same fields (id,lattice,x,etc) used by dump command
 operation = "

•

these keywords apply only to the image style•
keyword = backcolor or boundcolor or boxcolor or color or cwrap or dwrap or scolor or sdiam or smap

backcolor arg = color
 color = name of color for background

boundcolor arg = color
 color = name of color for boundaries between sites

boxcolor arg = color
 color = name of color for box lines

color args = name R G B
 name = name of color
 R,G,B = red/green/blue numeric values from 0.0 to 1.0

cwrap arg = yes or no
 yes/no = do or do not wrap out-of-range color values into the defined crange

dwrap arg = yes or no
 yes/no = do or do not wrap out-of-range diameter values into the defined drange

scolor args = I color
 I = integer value or range of values (see below)
 color = name of color or color1/color2/... or random

sdiam args = I diam
 I = integer value or range of values (see below)
 diam = diameter of sites of that value

•

202

https://spparks.github.io

smap args = lo hi style delta N entry1 entry2 ... entryN
 lo = number or min = lower bound of range of color map
 hi = number or max = upper bound of range of color map
 style = 2 letters = "c" or "d" or "s" plus "a" or "f"
 "c" for continuous
 "d" for discrete
 "s" for sequential
 "a" for absolute
 "f" for fractional
 delta = binsize (only used for style "s", otherwise ignored)
 binsize = range is divided into bins of this width
 N = # of subsequent entries
 entry = value color (for continuous style)
 value = number or min or max = single value within range
 color = name of color used for that value
 entry = lo hi color (for discrete style)
 lo/hi = number or min or max = lower/upper bound of subset of range
 color = name of color used for that subset of values
 entry = color (for sequential style)
 color = name of color used for a bin of values

Examples:

dump_modify 1 delay 30.0
dump_modify 1 loglinfreq 7 10.0 delay 100.0 flush yes
dump_modify mine thresh energy > 0.0 thresh id <= 1000

Description:

Modify the parameters of a previously defined dump command. Not all parameters are relevant to all dump styles.

These keywords apply to various dump styles, including the dump image style, except as noted below. The
descriptions give details.

The delay keyword will suppress output until the current time is tdelay or greater. Note that tdelay is not an
elapsed time since the start of the run, but an absolute time.

The delta keyword will reset the dump interval delta used in the original dump command.

The fileper keyword is documented below with the nfile keyword.

The first keyword can be used to set the counter used to enumerate successive snapshots. This can be useful when
continuing/restarting a previous simulation, so as not to overlap new snapshots with previous output.

The counter is used in the TIMESTEP field of snapshots produced by the dump text or dump sites styles. It is also
used in the filenames generated by the "*" wildcard character in the user-specified dump file name, as explained
on the dump command doc page.

The flush option determines whether a flush operation in invoked after a dump snapshot is written to the dump
file. A flush insures the output in that file is current (no buffering by the OS), even if SPPARKS halts before the
simulation completes. The flush option is only relevant to the dump text style.

The logfreq and loglinfreq keywords will produce output at progressively larger intervals during the course of a
simulation. There will be N outputs per interval where the size of each interval is initially delta and then scales up

203

by factor each time. See the stats command for more information on how the output times are specified.

If N is specified as 0, then this will turn off logarithmic output, and revert to regular output every delta seconds.

The nfile or fileper keywords currently apply only to the text dump style. They can be used in conjunction with
the "%" wildcard character in the specified dump file name. As explained on the dump command doc page, the
"%" character causes the dump file to be written in pieces, one piece for each of P processors. By default P = the
number of processors the simulation is running on. The nfile or fileper keyword can be used to set P to a smaller
value, which can be more efficient when running on a large number of processors.

The nfile keyword sets P to the specified Nf value. For example, if Nf = 4, and the simulation is running on 100
processors, 4 files will be written, by processors 0,25,50,75. Each will collect information from itself and the next
24 processors and write it to a dump file.

For the fileper keyword, the specified value of Np means write one file for every Np processors. For example, if
Np = 4, every 4th processor (0,4,8,12,etc) will collect information from itself and the next 3 processors and write
it to a dump file.

The pad keyword only applies when the dump filename is specified with a wildcard "*" character which becomes
the timestep. If pad is 0, which is the default, the timestep is converted into a string of unpadded length, e.g. 100
or 12000 or 2000000. When pad is specified with Nchar > 0, the string is padded with leading zeroes so they are
all the same length = Nchar. For example, pad 7 would yield 0000100, 0012000, 2000000. This can be useful so
that post-processing programs can easily read the files in ascending timestep order.

The region keyword allows sub-selection of lattice sites to output. If specified, only sites in the region will be
written to the dump file or included in the image. Only one region can be applied as a filter (the last one
specified). See the region command for more details. Note that a region can be defined as the "inside" or "outside"
of a geometric shape, and it can be the "union" or "intersection" of a series of simpler regions.

The sort keyword determines whether lines of per-site output in a snapshot are sorted or not. A sort value of off
means they will typically be written in indeterminate order, at least in parallel, since the sites are written to file in
per-processor chunks. A sort value of id means sort the output by site ID. A sort value of N or -N means sort the
output by the value in the Nth column of per-site info in either ascending or descending order.

If multiple processors are writing the dump file, via the "%" wildcard in the dump filename, then sorting cannot
be performed.

IMPORTANT NOTE: Sorting dump file output requires extra overhead in terms of CPU and communication
cost, as well as memory, versus unsorted output.

The thresh keyword allows sub-selection of lattice sites to output. Multiple thresholds can be specified.
Specifying "none" turns off all threshold criteria. If thresholds are specified, only sites whose attributes meet all
the threshold criteria are written to the dump file or included in the image. The possible attributes that can be
tested for are the same as the fields that can be specified in the dump command. Note that different attributes can
be output by the dump command than are used as threshold criteria by the dump_modify command. E.g. you can
output the coordinates and propensity of sites whose energy is above some threshold.

The tol keyword will trigger a dump snapshot if the current time is within epsilon of the target time for dump
output.

This can be useful when running with the sweep command and the time interval per sweep leads to small

204

round-off differences in time. For example, if the time per sweep is 1/26 (for 26 neighbors per lattice site) and
delta = 1.0, but an snapshot is not written at time 2.0 but at 2.0385 (0.385 = 1/26). I.e. one sweep beyond the
desired dump time. Using a tol < 1/26 will give the desired snapshots at 1,2,3,4, etc.

The vtk keyword only applies to the vtk style, for which it is required. As explained on the dump vtk doc page,
this style can only be used to output a single per-site value for a regular lattice of sites. The settings for this
command provide information about the underlying lattice and site value bounds.

The nx,ny,nz settings are the extent of the regular lattice of sites, whether it is periodic in any dimension or not.
Use a value of nz = 1 for 2d simulations and ny = nz = 1 for 1d simulations.

The minvalue and maxvalue settings are the min/max bounds within which all the per-site values for the specified
single per-site field will fall. Note that the actual values do not need to extend to these bounds. E.g. the maximum
initial spin value might be 1000 (e.g. for app_style potts), but at later times an individual snapshot would have no
spins > 900.

These keywords apply only to the dump image style. The descriptions give details.

The backcolor sets the background color of the images. The color name can be any of the 140 pre-defined colors
(see below) or a color name defined by the dump_modify color option.

The boundcolor keyword sets the color used to draw boundaries between sites, each of which is a set of 4
cylinders, as described in the dump image doc page. The color name can be any of the 140 pre-defined colors (see
below) or a color name defined by the dump_modify color option.

The drawing of boundaries between neighboring sites is enabled by the boundary keyword of the dump image
command.

The boxcolor keyword sets the color of the simulation box drawn around the sites in each image. See the "dump
image box" command for how to specify that a box be drawn. The color name can be any of the 140 pre-defined
colors (see below) or a color name defined by the dump_modify color option.

The color keyword allows definition of a new color name, in addition to the 140-predefined colors (see below),
and associates 3 red/green/blue RGB values with that color name. The color name can then be used with any other
dump_modify keyword that takes a color name as a value. The RGB values should each be floating point values
between 0.0 and 1.0 inclusive.

When a color name is converted to RGB values, the user-defined color names are searched first, then the 140
pre-defined color names. This means you can also use the color keyword to overwrite one of the pre-defined color
names with new RBG values.

The cwrap keyword enables wrapping of integer values used to deterimine site colors in the image, into the range
specified by the crange keyword in the dump image command.

The crange keyword defines a range of values lo to hi. If the cwrap argument is no, which is the default, then
values outside the range lo to hi are clipped to that range. I.e. values < lo become lo and values > hi become hi.
This means out-of-range values will all be drawn with either the lo or hi color, which may not be what you want.

If the cwrap argument is yes, then values outside the range lo to hi are wrapped back into the range. E.g. a value
of hi+1 becomes lo, hi+2 becomes lo+1, etc. Similarly, a value of lo-1 becomes hi, lo-2 becomes hi-1, etc. This is

205

a way to map a huge number N of possible integer values into a smaller number of M crange colors. This may be
required if N = 2 billion spin values, since memory for that many colors cannot be allocated. Using a crange with
M = 10000 would work in that scenario.

The dwrap keyword enables wrapping of integer values used to deterimine site diameters in the image, into the
range specified by the drange keyword in the dump image command. It's purpose and the way it operates on
diamenters is exactly the same as how the cwrap keyword operates of colors, as described above.

The scolor keyword can be used with the dump image command, when its site color setting is an integer attribute,
and a crange setting from lo to hi has been specified to set the color associated with each integer value.

The specified I value should be an integer from lo to hi inclusive. A wildcard asterisk can be used in place of or in
conjunction with the type argument to specify a range of values. This takes the form "*" or "*n" or "n*" or "m*n".
An asterisk with no numeric values means all values from lo to hi. A leading asterisk means all values from lo to
n (inclusive). A trailing asterisk means all values from n to hi (inclusive). A middle asterisk means all values from
m to n (inclusive).

The specified color can be a single color which is any of the 140 pre-defined colors (see below) or a color name
defined by the dump_modify color option. Or it can be two or more colors separated by a "/" character, e.g.
red/green/blue. In the former case, that color is assigned to all the specified integer values. In the latter case, the
list of colors are assigned in a round-robin fashion to each of the specified integer values.

The specified color can also be the word random. In this case, random red/blue/green color values, each from 0.0
to 1.0, are generated for each I value. This is a convenient way to assign a large number of random colors, without
having to list them explicitly by name.

The sdiam keyword can be used with the dump image command, when its site diameter setting is an integer
attribute, and a drange setting from lo to hi has been specified to set the diameter associated with each integer
value. The specified I value should be an integer from lo to hi. As with the scolor keyword, a wildcard asterisk
can be used as part of the I argument to specify a range of values.

The smap keyword can be used with the dump image command, when its site color setting is a floating point
attribute, to setup a color map. The color map is used to assign a specific RGB (red/green/blue) color value to an
individual site when it is drawn, based on the atom's attribute, which is a numeric value, e.g. its x coordinate, if
the attribute "x" was specified.

The basic idea of a color map is that the site-attribute will be within a range of values, and that range is associated
with a series of colors (e.g. red, blue, green). An sites's specific value (x = -3.2) can then mapped to the series of
colors (e.g. halfway between red and blue), and a specific color is determined via an interpolation procedure.

There are many possible options for the color map, enabled by the smap keyword. Here are the details.

The lo and hi settings determine the range of values allowed for the site attribute. If numeric values are used for lo
and/or hi, then values that are lower/higher than lo/hi are set to either lo or hi. I.e. the range is static. If lo is
specified as min or hi as max then the range is dynamic, and the lower and/or upper bound will be calculated each
time an image is drawn, based on the set of sites being visualized.

The style setting is two letters, such as "ca". The first letter is either "c" for continuous, "d" for discrete, or "s" for
sequential. The second letter is either "a" for absolute, or "f" for fractional.

A continuous color map is one in which the color changes continuously from value to value within the range. A
discrete color map is one in which discrete colors are assigned to sub-ranges of values within the range. A

206

sequential color map is one in which discrete colors are assigned to a sequence of sub-ranges of values covering
the entire range.

An absolute color map is one in which the values to which colors are assigned are specified explicitly as values
within the range. A fractional color map is one in which the values to which colors are assigned are specified as a
fractional portion of the range. For example if the range is from -10.0 to 10.0, and the color red is to be assigned
to atoms with a value of 5.0, then for an absolute color map the number 5.0 would be used. But for a fractional
map, the number 0.75 would be used since 5.0 is 3/4 of the way from -10.0 to 10.0.

The delta setting is only specified if the style is sequential. It specifies the bin size to use within the range for
assigning consecutive colors to. For example, if the range is from -10.0 to 10.0 and a delta of 1.0 is used, then 20
colors will be assigned to the range. The first will be from -10.0 <= color1 < -9.0, then 2nd from -9.0 <= color2 <
-8.0, etc.

The N setting is how many entries follow. The format of the entries depends on whether the color map style is
continuous, discrete or sequential. In all cases the color setting can be any of the 140 pre-defined colors (see
below) or a color name defined by the dump_modify color option.

For continuous color maps, each entry has a value and a color. The value is either a number within the range of
values or min or max. The value of the first entry must be min and the value of the last entry must be max. Any
entries in between must have increasing values. Note that numeric values can be specified either as absolute
numbers or as fractions (0.0 to 1.0) of the range, depending on the "a" or "f" in the style setting for the color map.

Here is how the entries are used to determine the color of an individual site, given the value X of its site attribute.
X will fall between 2 of the entry values. The color of the site is linearly interpolated (in each of the RGB values)
between the 2 colors associated with those entries. For example, if X = -5.0 and the 2 surrounding entries are
"red" at -10.0 and "blue" at 0.0, then the site's color will be halfway between "red" and "blue", which happens to
be "purple".

For discrete color maps, each entry has a lo and hi value and a color. The lo and hi settings are either numbers
within the range of values or lo can be min or hi can be max. The lo and hi settings of the last entry must be min
and max. Other entries can have any lo and hi values and the sub-ranges of different values can overlap. Note that
numeric lo and hi values can be specified either as absolute numbers or as fractions (0.0 to 1.0) of the range,
depending on the "a" or "f" in the style setting for the color map.

Here is how the entries are used to determine the color of an individual site, given the value X of its site attribute.
The entries are scanned from first to last. The first time that lo <= X <= hi, X is assigned the color associated with
that entry. You can think of the last entry as assigning a default color (since it will always be matched by X), and
the earlier entries as colors that override the default. Also note that no interpolation of a color RGB is done. All
sites will be drawn with one of the colors in the list of entries.

For sequential color maps, each entry has only a color. Here is how the entries are used to determine the color of
an individual site, given the value X of its site attribute. The range is partitioned into N bins of width binsize.
Thus X will fall in a specific bin from 1 to N, say the Mth bin. If it falls on a boundary between 2 bins, it is
considered to be in the higher of the 2 bins. Each bin is assigned a color from the E entries. If E < N, then the
colors are repeated. For example if 2 entries with colors red and green are specified, then the odd numbered bins
will be red and the even bins green. The color of the site is the color of its bin. Note that the sequential color map
is really a shorthand way of defining a discrete color map without having to specify where all the bin boundaries
are.

Restrictions:

207

This command can only be used as part of the lattice-based applications. See the app_style command for further
details.

Related commands:

dump, dump image

Default:

The option defaults are

backcolor = black•
boundcolor = white•
boxcolor = yellow•
color = 140 color names are pre-defined as listed below•
cwrap = no•
delay = 0.0•
delta = value for delta used in the dump command•
dwrap = no•
flush = yes•
logfreq = off•
loglinfreq = off•
pad = 0•
region = none•
scolor = * c1/c2/.../c140 where c1-c140 are the names of the 140 pre-defined colors•
sdiam = * 1.0•
smap = min max cf 2 min blue max red•
thresh = none•
tol = 0.0•

These are the 140 colors that SPPARKS pre-defines for use with the dump image and dump_modify commands.
Additional colors can be defined with the dump_modify color command. The 3 numbers listed for each name are
the RGB (red/green/blue) values. Divide each value by 255 to get the equivalent 0.0 to 1.0 value.

aliceblue = 240,
248, 255

antiquewhite = 250, 235,
215 aqua = 0, 255, 255 aquamarine = 127,

255, 212
azure = 240, 255,
255

beige = 245, 245,
220 bisque = 255, 228, 196 black = 0, 0, 0 blanchedalmond =

255, 255, 205 blue = 0, 0, 255

blueviolet = 138,
43, 226 brown = 165, 42, 42 burlywood = 222, 184,

135
cadetblue = 95, 158,
160

chartreuse = 127,
255, 0

chocolate = 210,
105, 30 coral = 255, 127, 80 cornflowerblue = 100,

149, 237
cornsilk = 255, 248,
220

crimson = 220, 20,
60

cyan = 0, 255, 255 darkblue = 0, 0, 139 darkcyan = 0, 139, 139 darkgoldenrod =
184, 134, 11

darkgray = 169,
169, 169

darkgreen = 0, 100,
0

darkkhaki = 189, 183,
107

darkmagenta = 139, 0,
139

darkolivegreen = 85,
107, 47

darkorange = 255,
140, 0

darkorchid = 153,
50, 204 darkred = 139, 0, 0 darksalmon = 233,

150, 122
darkseagreen = 143,
188, 143

darkslateblue = 72,
61, 139

darkslategray = 47,
79, 79

darkturquoise = 0, 206,
209

darkviolet = 148, 0,
211

deeppink = 255, 20,
147

deepskyblue = 0,
191, 255

208

dimgray = 105, 105,
105

dodgerblue = 30, 144,
255 firebrick = 178, 34, 34 floralwhite = 255,

250, 240
forestgreen = 34,
139, 34

fuchsia = 255, 0,
255

gainsboro = 220, 220,
220

ghostwhite = 248, 248,
255 gold = 255, 215, 0 goldenrod = 218,

165, 32
gray = 128, 128,
128 green = 0, 128, 0 greenyellow = 173,

255, 47
honeydew = 240,
255, 240

hotpink = 255, 105,
180

indianred = 205, 92,
92 indigo = 75, 0, 130 ivory = 255, 240, 240 khaki = 240, 230,

140
lavender = 230, 230,
250

lavenderblush =
255, 240, 245 lawngreen = 124, 252, 0 lemonchiffon = 255,

250, 205
lightblue = 173, 216,
230

lightcoral = 240,
128, 128

lightcyan = 224,
255, 255

lightgoldenrodyellow =
250, 250, 210

lightgreen = 144, 238,
144

lightgrey = 211, 211,
211

lightpink = 255,
182, 193

lightsalmon = 255,
160, 122

lightseagreen = 32, 178,
170

lightskyblue = 135,
206, 250

lightslategray = 119,
136, 153

lightsteelblue = 176,
196, 222

lightyellow = 255,
255, 224 lime = 0, 255, 0 limegreen = 50, 205,

50
linen = 250, 240,
230

magenta = 255, 0,
255

maroon = 128, 0, 0 mediumaquamarine =
102, 205, 170

mediumblue = 0, 0,
205

mediumorchid =
186, 85, 211

mediumpurple =
147, 112, 219

mediumseagreen =
60, 179, 113

mediumslateblue = 123,
104, 238

mediumspringgreen =
0, 250, 154

mediumturquoise =
72, 209, 204

mediumvioletred =
199, 21, 133

midnightblue = 25,
25, 112

mintcream = 245, 255,
250

mistyrose = 255, 228,
225

moccasin = 255,
228, 181

navajowhite = 255,
222, 173

navy = 0, 0, 128 oldlace = 253, 245, 230 olive = 128, 128, 0 olivedrab = 107,
142, 35

orange = 255, 165,
0

orangered = 255,
69, 0 orchid = 218, 112, 214 palegoldenrod = 238,

232, 170
palegreen = 152,
251, 152

paleturquoise = 175,
238, 238

palevioletred = 219,
112, 147

papayawhip = 255, 239,
213

peachpuff = 255, 239,
213 peru = 205, 133, 63 pink = 255, 192,

203
plum = 221, 160,
221

powderblue = 176, 224,
230 purple = 128, 0, 128 red = 255, 0, 0 rosybrown = 188,

143, 143
royalblue = 65, 105,
225

saddlebrown = 139, 69,
19

salmon = 250, 128,
114

sandybrown = 244,
164, 96

seagreen = 46, 139,
87

seashell = 255, 245,
238 sienna = 160, 82, 45 silver = 192, 192, 192 skyblue = 135, 206,

235
slateblue = 106, 90,
205

slategray = 112,
128, 144 snow = 255, 250, 250 springgreen = 0, 255,

127
steelblue = 70, 130,
180 tan = 210, 180, 140

teal = 0, 128, 128 thistle = 216, 191, 216 tomato = 253, 99, 71 turquoise = 64, 224,
208

violet = 238, 130,
238

wheat = 245, 222,
179 white = 255, 255, 255 whitesmoke = 245,

245, 245 yellow = 255, 255, 0 yellowgreen = 154,
205, 50

209

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

dump_one command

Syntax:

dump_one dump-ID

dump-ID = ID of previously defined dump•

Examples:

dump_one mine
dump_one 2

Description:

Dump the current state of the lattice to the dump file defined by the dump command with this dump-ID. This can
be useful before or after a run, if the dump command itself did not produce a snapshot at the desired time or state.

The information dumped is determined by the dump command which must have been previously specified to use
the dump_one command.

Restrictions: none

Related commands:

dump

Default: none

210

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

echo command

Syntax:

echo style

style = none or screen or log or both•

Examples:

echo both
echo log

Description:

This command determines whether SPPARKS echoes each input script command to the screen and/or log file as it
is read and processed. If an input script has errors, it can be useful to look at echoed output to see the last
command processed.

Restrictions: none

Related commands: none

Default:

echo log

211

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

ecoord command

Syntax:

ecoord N eng

N = coordination number (see asterisk form below)•
eng = energy of site with this coordination number (energy units)•

Examples:

ecoord 8 5.6
ecoord 0 1.0e20
ecoord * 1.0
ecoord 8*12 10.0

Description:

This command sets the energy of an occupied site in a lattice as a function of coordination number, where
coordination = the number of occupied neighbor sites. See the app_style diffusion nonlinear command for how
the energy change of the system due to a diffusive hop is used to calculate a probability for the hop to occur.

Typically, Nmax+1 values should be specified by using this command one or more times, with N varying from 0
to Nmax, when Nmax is the number of neighbor sites for each lattice site.

The N index can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example
above. Or a wild-card asterisk can be used to set the energy value for multiple coordination numbers. This takes
the form "*" or "*n" or "n*" or "m*n". If Nmax = the number of neighbor sites, then an asterisk with no numeric
values means all coordination numbers from 0 to Nmax. A leading asterisk means all coordination numbers from
0 to n (inclusive). A trailing asterisk means all coordination numbers from n to Nmax (inclusive). A middle
asterisk means all coordination numbers from m to n (inclusive).

Note that if the third example is specfied first, followed by the first example, then the effect would be to set the
energy value for all coordination numbers to 1.0, then overwrite the energy value for coordination number 8 to
5.6.

The eng value should be in the energy units defined by the application's Hamiltonian and should be consistent
with the units used in any temperature command.

Restrictions:

This command can only be used as part of the app_style diffusion nonlinear application.

Related commands:

deposition, barrier

Default:

Energy values for all coordination numbers are set to 0.

212

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

ellipsoid_depth command

Syntax:

ellipsoid_depth D

D = Maximum depth•

Examples:

ellipsoid_depth 30

Description:

This command is used in the ellipsoid mode of the potts/weld_jom application to define the maximum ellipsoid
depth.

It is also used in the keyhole mode of the potts/weld_jom application to define the maximum depth of the shallow
ellipsoid.

Restrictions:

This command can only be used as part of the app_style potts/weld_jom application.

It must be a positive value.

Related commands:

deep_length, deep_width

Default: 1/4 * zhi

213

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

event command

Syntax:

event Nsite site1 site2 site3 old1 old2 old3 rate new1 new2 new3

Nsite = number of lattice sites involved in the event = 1,2,3•
site1,site2,site3 = fcc or tet or oct•
old1,old2,old3 = er or h or he or vac•
rate = rate constant for the event (inverse seconds or energy units)•
new1,new2,new3 = er or h or he or vac•

Examples:

event 1 tet h 1.78279E-9 he
event 1 oct h 1.78279E-9 he

event 2 tet tet h vac 0.98 vac h
event 2 tet oct h vac 1.89 vac h
event 2 tet oct vac h 0.68 h vac
event 2 tet tet he vac 0.49 vac he
event 2 oct oct he vac 1.49 vac he

event 3 tet oct oct h vac h 0.62 h h vac
event 3 tet oct tet h vac he 1.31 he h vac
event 3 tet oct tet he h vac 0.16 h vac he
event 3 tet oct oct h vac he 0.88 he h vac
event 3 tet oct oct he h vac 0.16 h vac he

Description:

This command defines an event for the "app_style erbium" application. It can be an event involving one, two, or
three lattice sites, as specified by Nsite. The first site is the central site which owns the event. The other 2 sites (if
specified) are neighors of the central site.

App_style erbium operates on a 3-fold lattice which contains fcc, tetrahedral, and octahedral sites. The site1,
site2, and site3 settings specify which kinds of sites are involved in the event: fcc or tet or oct. If Nsite = 1, then
only site1 is specified. If Nsite = 2, then only site1 and site2 are specified.

The old1, old2, and old3 settings specify what atoms must be on those sites in order for the event to potentially
take place. The possible atoms are er for erbium, h for hydrogen, he for helium, and vac for a vacant site. E.g. in
the first example above, a Hydrogen atom must be on a tetrahedral site for the event to be possible.

The rate setting determines the relative rate at which the event will occur. For Nsite=1 events, the units are
inverse seconds. For Nsite=2 or Nsite=3 events, the units are energy, which is converted into a rate via the
formula:

rate = exp(-energy/kT)

where T is the temperature you have specified.

In this case the rate setting should be in the energy units defined by the application's Hamiltonian and should be

214

https://spparks.github.io

consistent with the units used in the temperature command.

The new1, new2, and new3 settings specify what atoms will be on which sites if the event takes place. As with the
old settings, the possible atoms are er for erbium, h for hydrogen, he for helium, and vac for a vacant site. E.g. in
the first example above, a Hydrogen atom on a tetrahedral site transmutes into a Helium atom if the event takes
place.

Note that the set of Nsite=1,2,3 events listed above are a reasonably full description of a reaction/diffusion model
for hydrogen interstitials in an erbium lattice.

Restrictions: none

This command can only be used as part of the app_style erbium application.

Related commands:

app_style erbium

Default: none

215

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

event_ratios command

Syntax:

event_ratios Rgg Rpm Rv

Rgg = value of number of attempts for grain growth event in Monte Carlo simulation of sintering•
Rpm = value of number of attempt for pore migration event in Monte Carlo simulation of sintering•
Rv = value of number of attempts for vacancy creation and annihilation event in Monte Carlo simulation
of sintering

•

Examples:

event_ratios 2.0 1.0 4.0

Description:

This command sets the number of attempts for each event in the sintering application. Each event is attempted
with a frequency proportional to the ratio between the particular number of attempts given and the sum of the
number of attempts for all the events. The typical usage would be to alter the frequency of occurrence of the
events. The events correspond to: grain growth, pore migration and vacancy creation and annihilation.

Restrictions: these should be positive values.

This command can only be used as part of the sintering application. See the doc pages for the sintering application
defined by the app_style sinter command for further details.

Related commands:

event_temperatures

Default:

The default event ratios are 1.0 1.0 1.0.

216

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

event_temperatures command

Syntax:

event_temperatures Tgg Tpm Tv

Tgg = value of temperature for grain growth in Monte Carlo simulation of sintering•
Tpm = value of temperature for pore migration in Monte Carlo simulation of sintering•
Tv = value of temperature for vacancy creation and annihilation in Monte Carlo simulation of sintering•

Examples:

event_temperatures 2.0 1.0 15.0

Description:

This command sets the event temperature as used in the sintering application. The typical would be as part of a
Boltzmann factor that alters the probabilities of event acceptance and rejection.

Restrictions: these should be positive values.

This command can only be used as part of the sintering application. See the doc pages for the sintering application
defined by the app_style sinter command for further details.

Related commands:

event_ratios

Default:

The default temperatures are 1.0 1.0 15.0.

217

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

if command

Syntax:

if value1 operator value2 then command1 else command2

value1 = 1st value•
operator = "" or ">=" or "==" or "!="•
value2 = 2nd value•
then = required word•
command1 = command to execute if condition is met•
else = optional word•
command2 = command to execute if condition is not met (optional argument)•

Examples:

if ${steps} > 1000 then exit
if $x <= $y then "print X is smaller = $x" else "print Y is smaller = $y"
if ${eng} > 0.0 then "timestep 0.005"
if ${eng} > ${eng_previous} then "jump file1" else "jump file2"

Description:

This command provides an in-then-else test capability within an input script. Two values are numerically
compared to each other and the result is TRUE or FALSE. Note that as in the examples above, either of the values
can be variables, as defined by the variable command, so that when they are evaluated when substituted for in the
if command, a user-defined computation will be performed which can depend on the current state of the
simulation.

If the result of the if test is TRUE, then command1 is executed. This can be any valid SPPARKS input script
command. If the command is more than 1 word, it should be enclosed in double quotes, so that it will be treated as
a single argument, as in the examples above.

The if command can contain an optional "else" clause. If it does and the result of the if test is FALSE, then
command2 is executed.

Note that if either command1 or command2 is a bogus SPPARKS command, such as "exit" in the first example,
then executing the command will cause SPPARKS to halt.

Restrictions: none

Related commands:

variable

Default: none

218

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

include command

Syntax:

include file

file = filename of new input script to switch to•

Examples:

include newfile
include in.run2

Description:

This command opens a new input script file and begins reading SPPARKS commands from that file. When the
new file is finished, the original file is returned to. Include files can be nested as deeply as desired. If input script
A includes script B, and B includes A, then SPPARKS could run for a long time.

If the filename is a variable (see the variable command), different processor partitions can run different input
scripts.

Restrictions: none

Related commands:

variable, jump

Default: none

219

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

inclusion command

Syntax:

inclusion x y z r

x,y,z = position of center of protein inclusion•
r = radius of the protein•

Examples:

inclusion 10 12 0.0 2.0
inclusion 10 12 5.4 5.0

Description:

This command defines protein sites on a lattice and can only be used by app_style membrane applications.

Think of the protein as a sphere (or circle) centered at x,y,z and with a radius of r. All lattice sites within the
sphere (or circle) will be flagged as protein (as opposed to lipid or solvent). For lattices with a 2d geometry, the z
value should be speficied as 0.0.

Restrictions:

This command can only be used as part of the app_style membrane applications.

Related commands:

app_style membrane

Default: none

220

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

jump command

Syntax:

jump file label

file = filename of new input script to switch to•
label = optional label within file to jump to•

Examples:

jump newfile
jump in.run2 runloop

Description:

This command closes the current input script file, opens the file with the specified name, and begins reading
SPPARKS commands from that file. The original file is not returned to, although by using multiple jump
commands it is possible to chain from file to file or back to the original file.

Optionally, if a 2nd argument is used, it is treated as a label and the new file is scanned (without executing
commands) until the label is found, and commands are executed from that point forward. This can be used to loop
over a portion of the input script, as in this example. These commands perform 10 runs, each of 10000 steps, and
create 10 dump files named file.1, file.2, etc. The next command is used to exit the loop after 10 iterations. When
the "a" variable has been incremented for the tenth time, it will cause the next jump command to be skipped.

variable a loop 10
label loop
run 5.0
next a
jump in.lj loop

If the jump file argument is a variable, the jump command can be used to cause different processor partitions to
run different input scripts. In this example, SPPARKS is run on 40 processors, with 4 partitions of 10 procs each.
An in.file containing the example variable and jump command will cause each partition to run a different
simulation.

mpirun -np 40 lmp_ibm -partition 4x10 -in in.file

variable f world script.1 script.2 script.3 script.4
jump $f

Restrictions:

If you jump to a file and it does not contain the specified label, SPPARKS will come to the end of the file and
exit.

Related commands:

variable, include, label, next

Default: none

221

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

label command

Syntax:

label ID

ID = string used as label name•

Examples:

label xyz
label loop

Description:

Label this line of the input script with the chosen ID. Unless a jump command was used previously, this does
nothing. But if a jump command was used with a label argument to begin invoking this script file, then all
command lines in the script prior to this line will be ignored. I.e. execution of the script will begin at this line.
This is useful for looping over a section of the input script as discussed in the jump command.

Restrictions: none

Related commands: none

Default: none

222

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

lattice command

Syntax:

lattice style args

style = none or line/2n or sq/4n or sq/8n or tri or sc/6n or sc/26n or bcc or fcc or diamond or fcc/octa/tetra
or random/1d or random/2d or random/3d

none args: none
 all other styles except random = scale
 scale = lattice constant (distance units)

random/1d args = Nrandom cutoff
random/2d args = Nrandom cutoff
random/3d args = Nrandom cutoff

 Nrandom = # of random sites
 cutoff = distance within which sites are connected (distance units)

•

Examples:

lattice sq/4n 1.0
lattice fcc 3.52
lattice random/3d 10000 2.0
lattice none

Description:

Define a lattice for use by other commands. In SPPARKS, a lattice is simply a set of points in space, determined
by a unit cell with basis atoms, that is replicated infinitely in all dimensions. The arguments of the lattice
command can be used to define a wide variety of crystallographic lattices.

A lattice is used by SPPARKS in two ways. First, the create_sites command creates "sites" on the lattice points
inside the simulation box. Sites are used by an on-lattice or off-lattice application, specified by the app_style
command, which define events that change the values associated with sites (e.g. a spin flip) or the coordinates of
the site itself (for off-lattice applications).

Second, the lattice spacing in the x,y,z dimensions is used by other commands such as the region command to
define distance units and define geometric extents, for example in specifying the size of the simulation box via the
create_box command.

The lattice style must be consistent with the dimension of the simulation - see the dimension command and
descriptions of each style below.

A lattice consists of a unit cell, a set of basis sites within that cell. The vectors a1,a2,a3 are the edge vectors of the
unit cell. This is the nomenclature for "primitive" vectors in solid-state crystallography, but in SPPARKS the unit
cell they determine does not have to be a "primitive cell" of minimum volume.

For on-lattice applications (see the app_style command), the lattice definition also infers a connectivity between
lattice sites, which is used to generate the list of neighbors of each site. This information is ignored for off-lattice
applications. This means that for a 2d off-lattice application, it makes no difference whether a sq/4n or sq/8n
lattice is used; they both simply generate a square lattice of points.

223

https://spparks.github.io

In the style descriptions that follow, a = the lattice constant defined by the lattice command. Sites within a unit
cell are defined as (x,y,z) where 0.0 <= x,y,z < 1.0.

A lattice of style line/2n is a 1d lattice with a1 = a 0 0 and one basis site per unit cell at (0,0,0). Each lattice point
has 2 neighbors.

Lattices of style sq/4n and sq/8n are 2d lattices with a1 = a 0 0 and a2 = 0 a 0, and one basis site per unit cell at
(0,0,0). The sq/4n style has 4 neighbors per site (east/west/north/south); the sq/8n style has 8 neighbors per site
(same 4 as sq/4n plus 4 corner points).

A lattice of style tri is a 2d lattice with a1 = a 0 0 and a2 = 0 sqrt(3)*a 0, and two basis sites per unit cell at (0,0,0)
and (0.5,0.5,0). Each lattice points has 6 neighbors.

Lattices of style sc/6n and sc/26n are 3d lattices with a1 = a 0 0 and a2 = 0 a 0 and a3 = 0 0 a, and one basis site
per unit cell at (0,0,0). The sc/6n style has 6 neighbors per site (east/west/north/south/up/down); the sc/26n style
has 26 neighbors per site (surrounding cube including edge and corner points).

Lattices of style bcc and fcc and diamond are 3d lattice with a1 = a 0 0 and a2 = 0 a 0 and a3 = 0 0 a. There are
two basis sites per unit cell for bcc, 4 basis sites for fcc, and 8 sites for diamond. The location of the basis sites are
defined in any solid-state physics or crystallography text. The bcc style has 8 neighbors per site, the fcc has 12,
and the diamond has 4.

A lattice of style fcc/octa/tetra is a 3d lattice with a1 = a 0 0 and a2 = 0 a 0 and a3 = 0 0 a. There are 16 basis sites
per unit cell, which consist of 4 fcc sites plus 4 octahedral and 8 tetrahedral interstitial sites. Again, these are
defined in solid-state physics texts. There are 26 neighbors per fcc and octahedral site, and 14 neihbors per
tetrahedral site. More specifically, the neighbors are as follows:

neighbors of each fcc site: 12 fcc, 6 octa, 8 tetra•
neighbors of each octa site: 6 fcc, 12 octa, 8 tetra•
neighbors of each tetra site: 4 fcc, 4 octa, 6 tetra•

The random lattice styles are 1d, 2d, and 3d lattices with a1 = 1 0 0 and a2 = 0 1 0 and a3 = 0 0 1. Note that no
scale parameter is defined and the unit cell is a unit cube, not a cube with side length a. Thus a region command
using one of these lattices will define its geometric region directly, not as multiples of the scale parameter. When
the create_sites command is used, it will generate a collection of Nrandom points within the corresponding 1d, 2d,
or 3d region or simulation box. The number of neighbors per site is defined by the specified cutoff parameter.
Two sites I,J will be neighbors of each other if they are closer than the cutoff distance apart.

The command "lattice none" can be used to turn off a previous lattice definition. Any command that attempts to
use the lattice directly will then generate an error. No additional arguments need be used with "lattice none".

Restrictions: none

Related commands:

dimension, create_sites, region

Default: none

224

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

log command

Syntax:

log file

file = name of new logfile•

Examples:

log log.equil

Description:

This command closes the current SPPARKS log file, opens a new file with the specified name, and begins
logging information to it. If the specified file name is none, then no new log file is opened.

If multiple processor partitions are being used, the file name should be a variable, so that different processors do
not attempt to write to the same log file.

The file "log.spparks" is the default log file for a SPPARKS run. The name of the initial log file can also be set by
the command-line switch -log. See this section for details.

Restrictions: none

Related commands: none

Default:

The default SPPARKS log file is named log.spk

225

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

next command

Syntax:

next variables

variables = one or more variable names•

Examples:

next x
next a t x myTemp

Description:

This command is used with variables defined by the variable command. It assigns the next value to the variable
from the list of values defined for that variable by the variable command. Thus when that variable is subsequently
substituted for in an input script command, the new value is used.

See the variable command for info on how to define and use different kinds of variables in SPPARKS input
scripts. If a variable name is a single lower-case character from "a" to "z", it can be used in an input script
command as $a or $z. If it is multiple letters, it can be used as ${myTemp}.

If multiple variables are used as arguments to the next command, then all must be of the same variable style:
index, loop, universe, or uloop. An exception is that universe- and uloop-style variables can be mixed in the same
next command. Equal- or world-style variables cannot be incremented by a next command. All the variables
specified are incremented by one value from their respective lists.

When any of the variables in the next command has no more values, a flag is set that causes the input script to
skip the next jump command encountered. This enables a loop containing a next command to exit.

When the next command is used with index- or loop-style variables, the next value is assigned to the variable for
all processors. When the next command is used with universe- or uloop-style variables, the next value is assigned
to whichever processor partition executes the command first. All processors in the partition are assigned the same
value. Running SPPARKS on multiple partitions of processors via the "-partition" command-line switch is
described in this section of the manual. Universe- and uloop-style variables are incremented using the files
"tmp.spparks.variable" and "tmp.spparks.variable.lock" which you will see in your directory during such a
SPPARKS run.

Here is an example of running a series of simulations using the next command with an index-style variable. If this
input script is named in.polymer, 8 simulations would be run using data files from directories run1 thru run8.

variable d index run1 run2 run3 run4 run5 run6 run7 run8
shell cd $d
read_data data.polymer
run 10000
shell cd ..
clear
next d
jump in.polymer

226

https://spparks.github.io

If the variable "d" were of style universe, and the same in.polymer input script were run on 3 partitions of
processors, then the first 3 simulations would begin, one on each set of processors. Whichever partition finished
first, it would assign variable "d" the 4th value and run another simulation, and so forth until all 8 simulations
were finished.

Jump and next commands can also be nested to enable multi-level loops. For example, this script will run 15
simulations in a double loop.

variable i loop 3
variable j loop 5
clear
...
read_data data.polymer.ij
print Running simulation $i.$j
run 10000
next j
jump in.script
next i
jump in.script

Restrictions: none

Related commands:

jump, include, shell, variable,

Default: none

227

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

pair_coeff command

Syntax:

pair_coeff I J args ...

I,J = atom types (see asterisk form below)•
args = coefficients for one or more pairs of atom types•

Examples:

Examples:

pair_coeff 1 2 1.0 1.0 2.5
pair_coeff 2 * 1.0 1.0

Description:

Specify the pairwise force field coefficients for one or more pairs of atom types. The number and meaning of the
coefficients depends on the pair style.

I and J can be specified in one of two ways. Explicit numeric values can be used for each, as in the 1st example
above. I <= J is required. SPPARKS sets the coefficients for the symmetric J,I interaction to the same values.

A wild-card asterisk can be used in place of or in conjunction with the I,J arguments to set the coefficients for
multiple pairs of atom types. This takes the form "*" or "*n" or "n*" or "m*n". If N = the number of atom types,
then an asterisk with no numeric values means all types from 1 to N. A leading asterisk means all types from 1 to
n (inclusive). A trailing asterisk means all types from n to N (inclusive). A middle asterisk means all types from m
to n (inclusive). Note that only type pairs with I <= J are considered; if asterisks imply type pairs where J < I, they
are ignored.

Note that a pair_coeff command can override a previous setting for the same I,J pair. For example, these
commands set the coeffs for all I,J pairs, then overwrite the coeffs for just the I,J = 2,3 pair:

pair_coeff * * 1.0 1.0 2.5
pair_coeff 2 3 2.0 1.0 1.12

For many potentials, if coefficients for type pairs with I != J are not set explicitly by a pair_coeff command, the
values are inferred from the I,I and J,J settings by mixing rules. Details on the mixing as it pertains to individual
potentials are described on the doc page for the potential.

Here is the list of pair styles defined in SPPARKS. More will be added as new applications are developed. Click
on the style to display the formula it computes, arguments specified in the pair_style command, and coefficients
specified by the associated pair_coeff command:

pair_style lj/cut - cutoff Lennard-Jones potential•

Restrictions: none

Related commands:

228

https://spparks.github.io

pair_style

Default: none

229

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

pair_style lj command

Syntax:

pair_style lj Ntypes cutoff

lj = style name of this pair style•
Ntypes = # of particle types•
cutoff = global cutoff for pairwise interactions (distance units)•

Examples:

pair_style lj 1 2.5
pair_style lj 3 3.0

Description:

The lj/cut style computes the standard 12/6 Lennard-Jones potential, given by

Rc is the cutoff.

The following coefficients must be defined for each pair of particle types via the pair_coeff command, or by
mixing as described below:

epsilon (energy units)•
sigma (distance units)•
cutoff (distance units)•

Note that sigma is defined in the LJ formula as the zero-crossing distance for the potential, not as the energy
minimum at 2^(1/6) sigma.

The last coefficients is optional. If not specified, the global LJ cutoff specified in the pair_style command is used.

Mixing info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for all of the lj/cut pair
styles can be mixed. The style of mixing is geometric, which means that

epsilon_ij = sqrt(epsilon_i * epsilon_j)
sigma_ij = sqrt(sigma_i * sigma_j)

Restrictions: none

Related commands: none

230

https://spparks.github.io

Default: none

231

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

pair_style command

Syntax:

pair_style style args ...

style = one of the styles from the list below•
args = arguments used by a particular style•

Examples:

pair_style lj 1 2.5

Description:

Set the formula(s) SPPARKS uses to compute pairwise energy of interaction between sites or particles in an
off-lattice application.

The coefficients associated with a pair style are typically set for each pair of particle types, and are specified by
the pair_coeff command.

Here is the list of pair styles defined in SPPARKS. More will be added as new applications are developed. Click
on the style to display the formula it computes, arguments specified in the pair_style command, and coefficients
specified by the associated pair_coeff command:

pair_style lj/cut - cutoff Lennard-Jones potential•

Restrictions: none

Related commands:

pair_style

Default: none

232

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

pin command

Syntax:

pin fraction multiflag nthresh

fraction = fraction of sites (0 to 1) to convert to pinned sites•
multiflag = 0 for single sites, 1 for sites+neighbors•
nthresh = # of neighbor sites which must have different spins•

Examples:

pin 0.1 0 2

Description:

This command converts sites on a lattice to pinned sites by setting their spin value to Q+1, where Q is defined by
a Potts model. This command can only be used by the app_style potts/pin application. The size of the inclusions
and their location (anywhere or preferentially near grain boundaries) can be controlled by the multiflag and
nthresh parameters.

The way pinned sites are selected is as follows. A pinned site is chosen randomly. If the site is already a pinned
site, then another site is selected. If multiflag is set to 1, then if any of the site's neighbors are already a pinned
site, then another site is selected. If nthresh is a non-zero value, then the # of neighbor sites with spin values
different than the chosen site are counted. If the count is less than nthresh, then another site is selected.

Once the site is selected, just that site is converted to a pinned site if multiflag is 0. If multiflag is 1, then the site
plus all its neibhbors are converted to pinned sites.

This process continues until the desired fraction of changed sites is achieved. The entire process is done in a way
that should be independent of the number of processors used to run a particular simulation.

Note that if you pick a large volume fraction and/or a high value for nthresh it is possible that SPPARKS will
never find enough valid sites to convert to pinned sites. It will then loop endlessly.

Restrictions: none

This command can only be used as part of the app_style potts/pin and related applications.

Related commands:

app_style potts/pin

Default: none

233

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

potts/am/bezier command

Syntax:

potts/am/bezier keyword args

keyword = control_points x or y or z or beta

control_points x args = P0x P1x P2x P3x P4x
 P0x P1x P2x P3x P4x x component values for 5 control points (floating)

control_points y args = P1y P2y P3y
 P1y P2y P3y = y component values for 3 control points (floating), app automatically sets P0y=P4y=0

control_points z args = P1z P2z P3z
 P1z P2z P3z = z component values for 3 control points (floating), app automatically sets P0z=P4z=0

beta args = betay, betaz
 betay, betaz = lateral cross-section weights effecting lateral convexity

•

Examples:

potts/am/bezier control_points x -6.9 -6.9 0.6 6.9 6.9
potts/am/bezier control_points y 0.8 2.1 3.8
potts/am/bezier control_points z -0.9, -1.0 -2.8
potts/am/bezier beta 1.0 0.5

Description:

This command is defined and used by the app_style potts/am/bezier application.

The command argument control_points is required 3 times for specification of x,y,z component values of control
points used to define bezier melt pool surface.

The command argument beta is optional and can be used to adjust surface convexity according to schematic
image shown above. Note that app calculates distance to melt pool surface using a closest point projection
algorithm; this calculation is robust for convex surfaces but can and probably will fail for concave surfaces --
results may vary.

In the example above, 5 required floating point values are input for x component of control points, and 3 floating
point values are input for y,z components. Values for beta are the default values.

Restrictions:

This command can only be used with the app_style potts_am_bezier application.

Related commands:

app_style potts_am_bezier

Default:

There are no defaults for control_point values and they must be supplied as part of script running the
potts_am_bezier app. The beta keyword command is optional however and the above example shows the default
values betay=1.0,betaz=0.5.

234

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

print command

Syntax:

print string

string = text string to print. may contain variables•

Examples:

print "Done with equilibration"
print "The system temperature is now $t"

Description:

Print a text string to the screen and logfile. The text string must be a single argument, so it should be enclosed in
double quotes if it is more than one word. If variables are included in the string, they will be evaluated and their
current values printed.

If you want the print command to be executed multiple times (with changing variable values) then the print
command could appear in a section of the input script that is looped over (see the jump and next commands).

See the variable command for a description of equal style variables which are typically the most useful ones to
use with the print command. Equal-style variables can calculate formulas involving mathematical operations, or
references to other variables.

Restrictions: none

Related commands:

variable

Default: none

235

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

processors command

Syntax:

processors Px Py Pz

Px,Py,Pz = # of processors in each dimension of a 3d grid•

Examples:

processors 2 4 4

Description:

Specify how processors are mapped as a 3d logical grid to the global simulation box for spatial on-lattice or
off-lattice models.

When this command has not been specified, SPPARKS will choose Px, Py, Pz based on the dimensions of the
global simulation box so as to minimize the surface/volume ratio of each processor's sub-domain.

Since SPPARKS does not load-balance by changing the grid of 3d processors on-the-fly, this command should be
used to override the SPPARKS default if it is known to be sub-optimal for a particular problem.

The product of Px, Py, Pz must equal P, the total # of processors SPPARKS is running on. If multiple partitions
are being used then P is the number of processors in this partition; see this section for an explanation of the
-partition command-line switch.

If P is large and prime, a grid such as 1 x P x 1 will be required, which may incur extra communication costs.

Restrictions:

This command must be used before the simulation box is defined by a read_sites or create_box command.

Related commands: none

Default:

SPPARKS chooses Px, Py, Pz

236

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

pulse command

Syntax:

pulse A period

A = fractional amplification of potts/weld model pool size•
period = cyclic time period expressed in Monte Carlo steps (MCS)•

Examples:

pulse 0.25 64

Description:

This command defines an optional pulsed power simulation to the app_style potts/weld application. The
parameter A scales up the weld pool size reaching a maximum size proportional to (1+A). A must be > 0.0. To
simulate the pulsed aspect of the model, a time period is specified. Period must be > 2.0.

Note that this command generally produces a spatially periodic effect that also depends upon the velocity
parameter in the app_style potts/weld application.

Restrictions:

This command can only be used as part of the app_style potts/weld application.

Related commands:

app_style potts/weld

Default: none

If this command is not present in a weld simulation, then the pulse aspect of the app_style potts/weld application
is not active.

237

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

read_sites command

Syntax:

read_sites file

file = name of data file to read in•

Examples:

read_sites data.potts
read_sites ../run7/data.potts.gz

Description:

Read in a data file containing information SPPARKS needs to setup an on-lattice or off-lattice application. The
file can be ASCII text or a gzipped text file (detected by a .gz suffix). This is one of 2 ways to specify event sites;
see the create_sites command for another method.

A data file has a header and a body, as described below. The body of the file contains up to 3 sections in the
following order: Sites, Neighbors, Values. Sites defines the coordinates of event sites. Neighbors define the
neighbors of each site (only for on-lattice applications). Values assign per-site values to each site, which can also
be done via the set command.

The read_sites command can be used in one of 3 scenarios:

If a simulation box has not already been created and no event sites exist, then the data file defines the box size (in
the header), and it must define Sites. It must also define Neighbors for on-lattice applications. The Values section
is optional, since these can be set later via the set command.

If a simulation box has already been defined (by the "create_box" command), but no sites have previously been
defined, then the data file must define Sites. It must also define Neighbors for on-lattice applications. The Values
section is optional. If the data file defines a box size, it must be consistent with the simulation box that already
exists.

If a simulation box has already been defined, and sites have previosly been defined (by the "create_sites"
command or a previous read_sites command), then no Sites or Neighbors can be specfied, but the Values section
is used to set all or a subset of the per-site values defined by the application. This is a means of continuing a
previous simulation using a file written by the dump sites command as a restart file, since it writes in the format
that this command reads.

Note that the periodicity of the simulation box, as defined by the boundary command is not considered by this
command when defining sites or neighbors. It is up to you to insure sites are not duplicated on a periodic
boundary, or that a site's neighbor list does not include sites that are on the other side of the simulation box when
the boundary is not periodic. This is in contrast to the create_sites command which accounts for both of these
issues when defining sites and their neighbors.

The first line of the header of the data file is always skipped; it typically contains a description of the file. Then
lines are read one at a time. Lines can have a trailing comment starting with '#' that is ignored. If the line is blank
(only whitespace after comment is deleted), it is skipped. If the line contains a header keyword, the corresponding

238

https://spparks.github.io

value(s) is read from the line. If it doesn't contain a header keyword, the line begins the body of the file.

The body of the file contains zero or more sections. The first line of a section has only a keyword. The next line is
skipped. The remaining lines of the section contain values. The number of lines depends on the section keyword
as described below. Zero or more blank lines can be used between sections. Sections can appear in any order, with
a few exceptions as noted below.

The formatting of individual lines in the data file (indentation, spacing between words and numbers) is not
important except that header and section keywords (e.g. dimension, xlo xhi, Sites, Values) must be capitalized as
shown and can't have extra white space between their words - e.g. two spaces or a tab between "xlo and "xhi" is
not valid.

These are the recognized header keywords. Header lines can come in any order. The value(s) are read from the
beginning of the line. Thus the keyword sites should be in a line like "1000 sites"; the keyword ylo yhi should be
in a line like "-10.0 10.0 ylo yhi". All these numeric settings have a default value of 0, except the lo/hi box size
defaults which are -0.5 and 0.5. A line need only appear if the value is different than the default. If the keyword
values have already been defined (e.g. box sizes for a previously created simulation box), then the values in the
data file must match.

dimension = dimension of system = 1,2,3•
sites = number of sites•
max neighbors = max # of neighbors of any site•
label1 label2 ... labelN values = column labels for Values section•
xlo xhi = simulation box boundaries in x dimension•
ylo yhi = simulation box boundaries in y dimension•
zlo zhi = simulation box boundaries in z dimension•

The max neighbors setting is only needed if the file contains a Neighbors section, which is only used for on-lattice
applications.

The values setting is only needed if a Values section is included in the file, and if it does not list per-site info for
all the integer and floating point values defined by the application. If only a subset of per-site values are listed in
each line, then the values setting labels what they are. The labels have the same syntax as those defined by the
dump sites command, namely "id", "site", "iN", or "dN". Note that "id" must always be included and come first,
so that SPPARKS can assign the values that follow to the correct site.

The simulation box size is determined by the lo/hi settings. For 2d simulations, the zlo zhi values should be set to
bound the z coords for atoms that appear in the file; the default of -0.5 0.5 is valid if all z coords are 0.0. The same
rules hold for ylo and yhi for 1d simulations.

These are the possible section keywords for the body of the file: Sites, Neighbors, Values.

Each section is listed below. The format of each section is described including the number of lines it must contain
and rules (if any) for where it can appear in the data file.

Any individual line in the various sections can have a trailing comment starting with "#" for annotation purposes.
E.g. in the Sites section:

10 10.0 5.0 6.0 # impuity site

Sites section:

239

one line per site•
line syntax: ID x y z

ID = global site ID (1-N)
x y z = coordinates of site

•

example:

101 7.0 0.0 3.0

•

There must be N lines in this section where N = number of sites and is defined by the sites keyword in the header
section of the file. The lines can appear in any order.

Neighbors section:

one line per site•
line syntax: ID n1 n2 n3 ...

ID = global site ID (1-N)
n1 n2 n3 ... = IDs of neighbor sites

•

example:

101 7 32 15 1004 ...

•

There must be N lines in this section where N = number of sites and is defined by the sites keyword in the header
section of the file. The lines can appear in any order.

The number of neighbors can vary from site to site, but there can be no more than max neighbors for any one site.
The neighbors of an individual site can be listed in any order.

Values section:

one line per site•
line syntax: ID value1 value2 ...

ID = global site ID (1-N)
value1,value2,... = integer or floating point values for the site

•

example:

101 1 3 4.0

•

There must be N lines in this section where N = number of sites and is defined by the sites keyword in the header
section of the file. The lines can appear in any order.

The number of values per site depends on the comment keyword in the header section of the file. If it is not
defined, then the default line syntax is assumed to be:

line syntax: ID i1 i2 ... iN d1 d2 ... dN

meaning that all per-site values must be listed on each line. In the default case, they are listed in order, with the
integer values first, followed by the floating-point values.

Restrictions:

•

240

To write gzipped dump files, you must compile SPPARKS with the -DSPPARKS_GZIP option - see the
Making SPPARKS section of the documentation.

Related commands:

create_box, create_sites, set

Default: none

241

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

region command

Syntax:

region ID style args keyword value ...

ID = user-assigned name for the region•
style = block or cylinder or sphere or union or intersect

block args = xlo xhi ylo yhi zlo zhi
 xlo,xhi,ylo,yhi,zlo,zhi = bounds of block in all dimensions (distance units)

cylinder args = dim c1 c2 radius lo hi
 dim = x or y or z = axis of cylinder
 c1,c2 = coords of cylinder axis in other 2 dimensions (distance units)
 radius = cylinder radius (distance units)
 lo,hi = bounds of cylinder in dim (distance units)

sphere args = x y z radius
 x,y,z = center of sphere (distance units)
 radius = radius of sphere (distance units)

union args = N reg-ID1 reg-ID2 ...
 N = # of regions to follow, must be 2 or greater
 reg-ID1,reg-ID2, ... = IDs of regions to join together

intersect args = N reg-ID1 reg-ID2 ...
 N = # of regions to follow, must be 2 or greater
 reg-ID1,reg-ID2, ... = IDs of regions to intersect

•

zero or more keyword/value pairs may be appended•
keyword = side

side value = in or out
in = the region is inside the specified geometry
out = the region is outside the specified geometry

•

Examples:

region 1 block -3.0 5.0 INF 10.0 INF INF
region 2 sphere 0.0 0.0 0.0 5 side out
region void cylinder y 2 3 5 -5.0 EDGE
region outside union 4 side1 side2 side3 side4

Description:

This command defines a geometric region of space. Various other commands use regions. For example, the region
can be filled with sites via the create_sites command.

The distance units used to define the region are setup by the lattice command which must be used before any
regions are defined. The lattice command defines a lattice spacing and regions are defined in terms of this length
scale. For example, if the lattice spacing is 3.0 and the region sphere radius is 2.5, then the size of the sphere is
2.5*3.0 = 7.5.

Commands which use regions typically test whether a lattice site is contained in the region or not. For this
purpose, coordinates exactly on the region boundary are considered to be interior to the region. This means, for
example, for a spherical region, a lattice site on the sphere surface would be part of the region if the sphere were
defined with the side in keyword, but would not be part of the region if it were defined using the side out
keyword. See more details on the side keyword below.

242

https://spparks.github.io

The lo/hi values for the block or cylinder styles can be specified as EDGE or INF. EDGE means they extend all
the way to the global simulation box boundary. Note that this is the current box boundary; if the box changes size
during a simulation, the region does not. INF means a large negative or positive number (1.0e20), so it should
encompass the simulation box even if it changes size. If a region is defined before the simulation box has been
created (via create_box or read_sites commands), then an EDGE or INF parameter cannot be used.

IMPORTANT NOTE: Regions in SPPARKS are always 3d geometric objects, regardless of whether the
dimension of the lattice is 1d or 2d or 3d. Thus when using regions in a 2d simulation, for exapmle, you should be
careful to define the region so that its intersection with the 2d x-y plane of the simulation has the 2d geometric
extent you want. Also note that for 2d simulations, SPPARKS expects lattice sites to lie in the z=0 plane, and
similarly for 1d (y = z = 0), so the regions you define as input to the create_box command should reflect that.

For style cylinder, the c1,c2 params are coordinates in the 2 other dimensions besides the cylinder axis dimension.
For dim = x, c1/c2 = y/z; for dim = y, c1/c2 = x/z; for dim = z, c1/c2 = x/y. Thus the third example above
specifies a cylinder with its axis in the y-direction located at x = 2.0 and z = 3.0, with a radius of 5.0, and
extending in the y-direction from -5.0 to the upper box boundary.

The union style creates a region consisting of the volume of all the listed regions combined. The intersect style
creates a region consisting of the volume that is common to all the listed regions.

The side keyword determines whether the region is considered to be inside or outside of the specified geometry.
Using this keyword in conjunction with union and intersect regions, complex geometries can be built up. For
example, if the interior of two spheres were each defined as regions, and a union style with side = out was
constructed listing the region-IDs of the 2 spheres, the resulting region would be all the volume in the simulation
box that was outside both of the spheres.

Restrictions: none

Related commands:

lattice, create_sites

Default:

The option defaults are side = in.

243

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

reset_time command

Syntax:

reset_time style options:pre

style = stitch or time

for style stitch, options = "stitch_file_name" "last" or "first"•

for style time, options = new time•

Examples:

reset_time stitch outputfile.st last
reset_time stitch outputfile.st first
reset_time 0.0
reset_time 100.0

Description:

Set the current time to the specified value. This can be useful if a preliminary run was performed and you wish to
reset the time before performing a subsequent run. For the stitch style option, this is particularly useful for setting
the current simulation time to either the 'first' time step or 'last' time step contained in specified stitch file:
'stitch_file_name'.

Restrictions: none

Related commands: none

Default: none

244

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

run command

Syntax:

run delta keyword values ...

delta = run simulation for this amount of time (seconds)•
zero or more keyword/value pairs may be appended•
keyword = upto or pre or post

upto value = none
pre value = no or yes
post value = no or yes

•

Examples:

run 100.0
run 10000.0 upto
run 1000 pre no post yes

Description:

This command runs a Monte Carlo application for the specified number of seconds of simulation time. If multiple
run commands are used, the simulation is continued, possibly with new settings which were specified between the
successive run commands.

The application defines Monte Carlo events and probabilities which determine the amount of physical time
associated with each event.

A value of delta = 0.0 is acceptable; only the status of the system is computed and printed without making any
Monte Carlo moves.

The upto keyword means to perform a run starting at the current time up to the specified time. E.g. if the current
time is 10.0 and "run 100.0 upto" is used, then an additional 90.0 seconds will be run. This can be useful for very
long runs on a machine that allocates chunks of time and terminate your job when time is exceeded. If you need to
restart your script multiple times (after reading in the last dump sites snapshot via the read_sites command), you
can keep restarting your script with the same run command until the simulation finally completes.

The pre and post keywords can be used to streamline the setup, clean-up, and associated output to the screen that
happens before and after a run. This can be useful if you wish to do many short runs in succession (e.g.
SPPARKS is being called as a library which is doing other computations between successive short SPPARKS
runs).

By default (pre and post = yes), SPPARKS initializes data structures and computes propensities before every run.
After every run it gathers and prints timings statistics. If a run is just a continuation of a previous run, the data
structure initialization is not necessary. So if pre is specified as no then the initialization is skipped. Propensities
are still re-computed since commands between runs or a driver program may have changed the system, e.g. by
altering lattice values. Note that if pre is set to no for the very 1st run SPPAKRS performs, then it is overridden,
since the initialization must be done.

If post is specified as no, the full timing summary is skipped; only a one-line summary timing is printed.

245

https://spparks.github.io

Restrictions: none

Related commands: none

Default:

The option defaults are pre = yes and post = yes.

246

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

sector command

Syntax:

sector flag keyword value ...

flag = yes or no or N where N = 2,4,8•
zero or more keyword/value pairs may be appended•
keyword = tstop or nstop

tstop value = dt
 dt = elapsed time for events to perform within sector (seconds)

nstop value = N
 N = average number of events per site to perform within sector

•

Examples:

sector no
sector yes
sector 4
sector yes nstop 0.5
sector yes tstop 5.0

Description:

This command partitions the portion of the simulation domain owned by each processor into sectors or
sub-domains. It can only be used for on-lattice applications. Typically, it is used in a parallel simulation, to enable
parallelism, but it can also be used on a single processor.

If sectoring is enabled via the yes setting, then for 1d lattices, each processor's sub-domain is partioned into 2
halves, for 2d lattices, each processor's sub-domain is partitioned into 4 quadrants, and for 3d lattices it is
partitioned into 8 octants. If the N setting is used instead, then the number of sectors can be specified directly.
This may be useful in some models to reduce communication. A 3d lattice can use 2 (x only) or 4 sectors (x and
y), instead of the default 8 (x and y and z). A 2d lattice can use 2 sectors (x only), instead of the default 4 (x and
y). Note that if no sectors are used in a dimension, then there must be only one processor assigned to that
dimension of the simulation box (see the app_style procs command). For example, if "sector 2" is used for a 2d
lattice, then the processor layout must be Px1, where P is the total number of processors.

If sectors are turned on, then a kinetic Monte Carlo (KMC) or rejection KMC (rKMC) algorithm is performed in
the following manner. Events or sites are selected within the first sector on each processor, via a solver or
sweeping method. Communication is then done between processors to update sector boundaries. Then all
proecessors move to the next sector, and the process is repeated. Thus a single sweep over the entire lattice is
performed in 2 (or 4 or 8) stages for 1d (of 2d or 3d) lattices, as sectors are processed one at a time, followed by
the appropriate communication. This procedure insure events occurring on one processor do not conflict with
events performed by other processors.

The optional keywords determine how much time is spent on each sector (i.e. how many events are performed)
before moving to the next sector. See the discussion below for what they mean when sectoring is set to no.

Note that using sectors turns an exact KMC or rKMC algorithm into an approximate one, in the spirit of Amar.
This is because events are occuring within a sector while the state of the system on the boundary of the sector is
held frozen. If the time-per-sector is too large, this will require less communication but will induce incorrect

247

https://spparks.github.io

dynamics at the sector boundaries. Conversely, if the time-per-sector is too small, the simulation will perform few
events per sector and spend too much time communicating.

If the tstop keyword is set to a value > 0.0, it sets the time per sector to the specified value. For a KMC algorithm,
events are performed until this time threshhold is reached. The final event, whose time >= tstop, is not accepted.
For a rKMC algorithm, the time per attempted event = dt_sweep is defined by the application, and the number of
attempted events in each sector is set to nsite*int(tstop/dt_sweep). Because of integer truncation, the simulation
time increment in rKMC may differ slightly from the specified tstop.

If the nstop keyword is set to a value > 0.0, it sets the average number of events (or attempts) per site. For
example, an nstop value of 2.0 means attempt 2 events per site for a rKMC algorithm. For a KMC algorithm, this
is converted into a time using pmax = the maximum propensity per site. At the start of each visit to a sector, the
per-site propensity for the sector = psect, is computed. Psect is the total propensity of the sector divided by the
total number of active sites, which are those with propensity greater than zero. After all sectors have been visited,
pmax is set to the largest value of psect across all processors and sectors, and the threshold time for the next visit
to each sector is set to nstop/pmax.

In the KMC case, this means that if the total propensity of the system decreases as the simulation proceeds (e.g.
grain growth occurs), then the effective time per sweep will increase in an adaptive way. Said another way, the
number of events per sweep will remain roughly constant, as the time per event increases. In the rKMC case, the
time per attempt is constant due to the use of a null-bin, so there is no adaptivity.

If neither the tstop or nstop keywords are specified, a default value of nstop = 1.0 is used, meaning one event per
site is performed or attempted in the KMC or rKMC algorithm in each sector. This should give good behavior in
many applications, meaning high accuracy is achieved with good parallel performance due to a modest amount of
communication being performed.

Note that it makes no sense to specify both tstop and nstop since they define the time-per-sector in different ways.
When tstop is specified, it sets nstop to 0.0. Likewise when nstop is specified, it sets tstop to 0.0. Thus if both are
used, the last setting takes precedence.

If sectors are turned off via the no setting, then the nstop or tstop settings still have an effect for rKMC
simulations where the sweep style is set to color. They determine how many times the sites associated with each
color are looped over before moving to the next color. Normally, this should just be 1, which is the nstop default,
but this can be changed if desired.

Restrictions:

This command can only be used as part of on-lattice applications as specified by the app_style command.

Related commands:

app_style, solve_style, sweep

Default:

The default for sectoring is no and the option defaults are nstop = 1.0 and tstop = 0.0.

(Amar) Shin and Amar, Phys Rev B, 71, 125432-1-125432-13 (2005).

248

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

seed command

Syntax:

seed Nvalue

Nvalue = seed for a random number generator (positive integer)•

Examples:

seed 5838959

Description:

This command sets the random number seed for a master random number generator which is used by SPPARKS
to initialize auxiliary random number generators which in turn are used for all operations in the code requiring
random numbers. Thus this command is needed to perform any simulation with SPPARKS.

Restrictions: none

Related commands: none

Default: none

249

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

set command

Syntax:

set label style args keyword values ...

label = site or iN or dN or x or y or z or xyz•
style = value or range or unique or displace or stitch or bfile

value arg = nvalue
 nvalue = value to set sites to

range args = lo hi
 lo,hi = range of values to set sites to

unique args = none
displace arg = delta

 delta = max distance to displace the site
stitch args = stitchfile tstamp

 stitchfile = name of STITCH file
 tstamp = first or last or a floating point value
 if first: then site values from first timestamp in stitch file are read in
 if last: then site values from last timestamp in stitch file are read in
 if floating point value: site values for this timestamp are read in

bfile args = bfilename
 bfilename = name of binary file

•

zero or more keyword/value pairs may be appended•
keyword = fraction or region or loop or if

fraction value = frac
 frac = number > 0 and <= 1.0

region args = region-ID
 region-ID = ID of region that sites must be part of

loop arg = all or local
 all = loop over all sites
 local = loop over only sites I own

if args = label2 op nvalue2
 label2 = id or site or iN or dN or x or y or z
 op = "

•

Examples:

set i1 value 2 fraction 0.5
set d1 range 1.0 2.0 loop local
set xyz displace 0.2
set i1 range 1 50 if x <20 if i2 = 3
set site stitch equiaxed.st first
set site stitch equiaxed.st last
set site stitch equiaxed.st 1.0
set i1 stitch equiaxed.st 1.0
set d1 stitch equiaxed.st 1.0

Description:

Reset a per-site value for one or more sites. Each on-lattice or off-lattice application defines what per-site values
are stored with each site in its model. When sites are created by the create_sites or read_sites commands, their
per-site values may be set to zero or to values specified by those commands. This command enables the values to

250

https://spparks.github.io

be changed, either before the first run, or between runs.

The label determines which per-site quantity is set. iN and dN mean the Nth integer or floating-point quantity,
with 1 <= N <= Nmax. Nmax is defined by the application. If label is specified as site it is the same as i1. For
off-lattice applications, the x or y or z or xyz coordinates of each site can be adjusted.

For label iN or dN or site, the styles value or range can be used.

For style value, the per-site quantity is set to the specified nvalue, which should be either an integer or
floating-point numeric value, depending on what kind of per-site quantity is being set.

For style range, the per-site quantity is set to a random value between lo and hi (inclusive). Both lo and hi should
be either integer or floating-point numeric values, depending on what kind of per-site quantity is being set.

For style unique, the per-site quantity is set to the site ID, which is effectively a value unique to each site. This
can be useful, for example, for setting the initial spin of each site to a unique value.

NOTE: The displace style is not yet implemented but will be soon. The following text explains how it will work
for off-lattice applications.

For style displace, the label must be x or y or z or xyz For labels x or y or z, the corresponding coordinate of each
site is displaced by a random distance between -delta and delta. For lables xyz the site is displaced to a new
random point within a sphere of radius delta surrounding the site (or a circle for 2d models, or a line segement for
1d models).

Styles stitch and bfile can only be used for simple regular lattices. This means lattice = line (line/2n) for 1d
models, square (sq/4n or sq/8n) for 2d, or simple cubic (sc/6n or sc/26n) for 3d. See the create_sites command for
more details. The fraction, loop, region and if keywords are ignored for these styles; these styles set values for all
sites in the system.

For style stitch, a stitch file is read to extract values associated with a specified label. The stitch file can be created
by the dump stitch command or an external program. A stitch file can store multiple values for the same site, each
with a different timestamp. A different number of values can also be associated with each site. The specified
tstamp value is used to determine which of the multiple values is used for initializing each site. The specified time
value tstamp should exist in the file for at least some sites; it can exist on all the sites or just some of them. For
sites that do not have a value for the tstamp time but have a value at an earlier time, those sites will be set with the
value matching the most recent time stamp stored in the file. It is an error if the file does not contain any values
for the specified tstamp. A subsequent set command can be used to initialize the value of any sites in a different
way.

See the examples/stitch dir for examples of SPPARKS scripts that read and write stitch files.

For style bfile, a binary file is read to extract the values associated with the specified label. The binary file must
be created by an external program. It should contain 3 integer header values: Nx, Ny, Nz. These must match the
size of the regular lattice defined for the enitre simulation box. For 2d simulations, Nz = 1.

The file must then contain N integer or double values, depending on whether the label is for integer or floating
point site values. N must be Nx * Ny * Nz. The site values in the file must be ordered with x varying fastest, then
y, and z slowest. The binary file is read by a single processor, and the values are broadcast to all processors. Each
processor then extracts the subset of values from the 3d array of sites that correspond to the sites in its sub-domain
of the simulation box.

251

The optional keywords enables selection of sites whose label quantity will be reset to a new value. Note that these
optional keywords can be used in various combinations, and the if keyword can be used multiple times, to select
desired sites.

The keyword fraction means that only a fraction of the sites will be reset, where 0 < frac <= 1.0. For each site a
random number R is generated and the reset only occurs if R < frac.

The keyword region means that only sites in the specified region will be reset. Note that a defined region can be a
union or intersection of several regions and can be either inside or outside a geometric boundary; see the region
command for details.

The keyword loop determines how sites in the simulation box are looped over when their per-site quantity is reset.
In general, each processor will own some subset Nlocal of the total number of sites Nglobal in the simulation box.
The entire set of sites are assumed to have IDs from 1 to Nglobal. For loop all, each processor performs a loop
from 1 to Nglobal and generates the new value for that site. If it owns the site, then it resets its value. This means
that the changes to per-site values will be the same, independent of which processor owns which site. For loop
local, each processor loops over only its sites from 1 to Nlocal. This may be faster, but if random numbers are
used to determine new per-site values, it will give different answers depending on the the number of processors
used.

The keyword if sets a condition that must be met in order for the per-site quantity to be reset. The per-site quantity
specified by label2 is compared to the numeric nvalue2 and if the condition is not met, then the site is skipped.

Restrictions:

The stitch style is part the STITCH package. It is only enabled if SPPARKS was built with that package. See
Section 2.3 for more info on how to do this.

Related commands:

create_sites, read_sites

Default:

The default values for the optional keywords is fraction 1.0 and loop all. No region is defined by default nor are
any if-tests.

252

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

shell command

Syntax:

shell style args

style = cd or mkdir or mv or rm or rmdir

cd arg = dir
 dir = directory to change to

mkdir args = dir1 dir2 ...
 dir1,dir2 = one or more directories to create

mv args = old new
 old = old filename
 new = new filename

rm args = file1 file2 ...
 file1,file2 = one or more filenames to delete

rmdir args = dir1 dir2 ...
 dir1,dir2 = one or more directories to delete

•

Examples:

shell cd sub1
shell cd ..
shell mkdir tmp1 tmp2 tmp3
shell rmdir tmp1
shell mv log.lammps hold/log.1
shell rm TMP/file1 TMP/file2

Description:

Execute a shell command. Only a few simple file-based shell commands are supported, in Unix-style syntax. With
the exception of cd, all commands are executed by only a single processor, so that files/directories are not being
manipulated by multiple processors.

The cd style executes the Unix "cd" command to change the working directory. All subsequent SPPARKS
commands that read/write files will use the new directory. All processors execute this command.

The mkdir style executes the Unix "mkdir" command to create one or more directories.

The mv style executes the Unix "mv" command to rename a file and/or move it to a new directory.

The rm style executes the Unix "rm" command to remove one or more files.

The rmdir style executes the Unix "rmdir" command to remove one or more directories. A directory must be
empty to be successfully removed.

Restrictions:

SPPARKS does not detect errors or print warnings when any of these Unix commands execute. E.g. if the
specified directory does not exist, executing the cd command will silently not do anything.

Related commands: none

253

https://spparks.github.io

Default: none

254

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style command

Syntax:

app_style style args

style = application style name•
args = args•

Examples:

app_style ising 100 100
app_style potts 1000 1000 4

Description:

This command ...

Restrictions: none

Related commands:

variable, ...

Default: none

255

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style command

Syntax:

app_style style args

style = application style name•
args = args•

Examples:

app_style ising 100 100
app_style potts 1000 1000 4

Description:

This command ...

Restrictions: none

Related commands:

variable, ...

Default: none

256

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

solve_style command

Syntax:

solve_style style args keyword value ...

style = linear or tree or group or none

linear arg = none
tree arg = none
group args = hi lo

 hi,lo = range of allowed probabilities
none arg = none

•

zero or more keyword/value pairs may be appended•
keyword = ngroup

ngroup value = N
 N = # of groups to use

•

Examples:

solve_style linear
solve_style tree
solve_style group 1.0 1.0e-6
solve_style group 100.0 1.0 ngroup 10

Description:

Choose a kinetic Monte Carlo (KMC) solver to use in your application. If no sweeper is used then a solver is
required.

A KMC solver picks events for your application to perform from a list of events and their associated probabilities.
It does this using the standard Gillespie or BKL algorithm which also computes a timestep during which the
chosen event occus. The only difference between the various solver styles is the algorithm they use to select
events which affects their speed and scalability as a function of the number of events they choose from. The
linear solver may be suitable for simulations with few events; the tree or group solver should be used for larger
simulations.

The linear style chooses an event by scanning the list of events in a linear fashion. Hence the cost to pick an event
scales as O(N), where N is the number of events.

The tree style chooses an event by creating a binary tree of probabilities and their sums, as in the Gibson/Bruck
implementation of the Gillespie direct method algorithm. Its cost to pick an event scales as O(logN).

The group style chooses an event using the composition and rejection (CR) algorithm described originally in
Devroye and discussed in Slepoy. Its cost to pick an event scales as O(1) as it is a constant time algorithm. It
requires that you bound the hi and lo probabilities for any event that will be considered with the solver. Note that
for on-lattice applications this is typically the total probability of all events associated with a site. The value of lo
must be > 0.0 and lo cannot be >= hi. For efficiency purposes it is good to choose bounds that are reasonably
tight.

257

https://spparks.github.io

By default, the group style will create groups whose boundaries cascade downward in powers of 2 from hi to lo.
I.e. the first group is from hi/2 to hi, the second group is from hi/4 to hi/2, and continuing until lo is reached. Note
that for hi/lo = 1.0e6, there would thus be about 20 groups.

If the ngroup keyword is used, then it specifies the number of groups to use between lo and hi and they will be
equal in extent. E.g. for ngroup = 3, the first group is from lo to lo + (hi-lo)/3, the second group is from lo +
2*(hi-lo)/3, and the third group is from lo + 2*(hi-lo)/3 to hi.

IMPORTANT NOTE: For the group style, if an event is generated that has a probability = 0.0 (e.g. a site has no
possible event), that is not a violation of the lo bound. However if an event is generated with a non-zero
probability and the probability is less than lo or greater than hi, then the probability is reset by the solver to the lo
or hi bound. If this occurs during a run, SPPARKS will print out a warning message (either before the run, or at
the end of the script), since it indicates events have been selected using (slightly) different probabilities than the
model generated. This allows you to set a different lo or hi bound and re-run the simulation.

The none style deletes any KMC solver previously defined. This may be useful for transitioning from a KMC
solver in one run to a sweeping method with a rejection-KMC solver in a subsequent run.

Restrictions:

The ngroup keyword can only be used with style group.

Related commands:

app_style, sweep_style

Default: none

(Gillespie) Gillespie, J Comp Phys, 22, 403-434 (1976); Gillespie, J Phys Chem, 81, 2340-2361 (1977).

(BKL) Bortz, Kalos, Lebowitz, J Comp Phys, 17, 10 (1975).

(Gibson) Gibson and Bruck, J Phys Chem, 104, 1876 (2000).

(Devroye) Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York (1986).

(Slepoy) Slepoy, Thompson, Plimpton, J Chem Phys, 128, 205101 (2008).

258

http://cg.scs.carleton.ca/~luc/rnbookindex.html

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

app_style command

Syntax:

app_style style args

style = application style name•
args = args•

Examples:

app_style ising 100 100
app_style potts 1000 1000 4

Description:

This command ...

Restrictions: none

Related commands:

variable, ...

Default: none

259

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

stats command

Syntax:

stats delta keyword values ...

delta = time increment between statistical output (seconds)•
zero or more keyword/value pairs may be appended•
keyword = delay or logfreq or loglinfreq or tol

delay value = tdelay
 tdelay = delay stats until at least this time (seconds)

logfreq or loglinfreq values = N factor
 N = number of repetitions per interval
 factor = scale factor between intervals

tol value = epsilon
 epsilon = output stats if time is within epsilon of target time (seconds)

•

Examples:

stats 0.1
stats 0.1 delay 0.5
stats 1.0 loglinfreq 7 10.0

Description:

Print statistics to the screen and log file every so many seconds during a simulation. A value of 0.0 for delta
means only print stats at the beginning and end of the run, in which case no optional keywords can be used.

The quantities printed are elapsed CPU time followed by those provided by the application, followed by those
provided by any diagnostics you have defined.

Typically the application reports only the number of events or sweeps executed, followed by the simulation time,
but other application-specific quantities may also be reported. Quantities such as the total energy of the system
can be included in the output by creating diagnostics via the diag_style command.

The delay keyword will suppress output until the current time is tdelay or greater. Note that tdelay is not an
elapsed time since the start of the run, but an absolute time.

Using the logfreq or loglinfreq keyword will produce statistical output at progressively larger intervals during the
course of a simulation. There will be N outputs per interval where the size of the interval is initially delta and then
scales up by factor each time. With loglinfreq, output times increase arithmetically within an interval; with
logfreq the output times increase geometrically.

For example, this command

stats 0.1 loglinfreq 7 10.0

will produce output at times:

t = 0, 0.1, 0.2, ..., 0.7, 1, 2,, 7, 10, 20,

260

https://spparks.github.io

This command

stats 0.1 logfreq 1 2.0

will produce output at times:

t = 0, 0.1, 0.2, 0.4, 0.8, 1.6, ...

This command

stats 1.0 logfreq 10 10.0

will produce output at times:

t = 0, 1.0, 1.26, 1.58, 2.00, 2.51, 3.16, 3.98, 5.01, 6.31, 7.94, 10.0, ...

Note that in the above examples the times are the earliest times that output will be produced. In practice, because
time is incremented in discrete jumps, output will be produced at times somewhat later than these times.

If N is specified as 0, then this will turn off logarithmic output, and revert to regular output every delta seconds.

The tol keyword will trigger output if the current time is within epsilon of the target time for output.

This can be useful when running with the sweep command and the time interval per sweep leads to small
round-off differences in time. For example, if the time per sweep is 1/26 (for 26 neighbors per lattice site) and
delta = 1.0, but output does not appear at time 2.0 but at 2.0385 (0.385 = 1/26). I.e. one sweep beyond the desired
output time. Using a tol < 1/26 will give the desired outputs at 1,2,3,4, etc.

Restrictions:

See the doc pages for quantities provided by particular app_style and diag_style commands for further details.

Related commands:

dump, diag_style

Default:

The default delta setting is 0.0 (if this command is not used), so that stats will only be output at the beginning and
end of the run. The keyword defaults are delay = 0.0, no logarithmic output, tol = 0.0.

261

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

sweep command

Syntax:

sweep style keyword value ...

style = random or raster or color or color/strict or none•
zero or more keyword/value pairs may be appended•
keyword = mask

mask value = yes or no
 yes/no = mask out sites than cannot change

•

Examples:

sweep random
sweep raster mask yes ...

Description:

Use a rejection kinetic Monte Carlo (rKMC) algorithm for an on-lattice application. If rKMC is not used then a
kinetic Monte Carlo (KMC) algorithm must be used as defined by the solve_style command.

The rKMC algorithm in SPPARKS selects sites on a lattice in an order determined by this command and requests
that the application perform events. The application defines the geometry and connectivity of the lattice, what the
possible events are, and defines their rates and acceptance/rejection criteria.

The ordering of selected sites is also affected by the sector command, which partitions each processor's portion of
the simulation domain into sectors which are quadrants (2d) or octants (3d). In this case, the ordering described
below is within each sector. Sectors are looped over one at a time, interleaved by communication of lattice values
inbetween.

For the random style, sites are chosen randomly, one at a time.

For the raster style, a sweep of the lattice is done, as a loop over all sites in a pre-determined order, e.g. a triple
loop over i,j,k for a 3d cubic lattice.

For the color style, lattice sites are partitioned into sub-groups or colors which are non-interacting in the sense
that events on two sites of the same color can be perfored simultaneously without conflict. This enables
parallelism since events on all sites of the same color can be attempted simultaneously. Similar to sectors, the
colors are looped over, interleaved by communication of lattice values inbetween.

The color/strict style is the same as the color style except that random numbers are generated in a way that is
independent of the processor which generates them. Thus SPPARKS should produce the same answer,
independent of how many processors are used. This can be useful in debugging an application.

If the application supports it, the mask keyword can be set to yes to skip sites which cannot perform an event due
to the current value of the site and its neighbors. Enabling masking should not change the answer given by a
simulation (in a statistical sense); it only offers a computational speed-up. For example, sites in the interior of
grains in a Potts grain-growth model may have no potential of flipping their value. Masking can only be set to yes
if the temperature is set to 0.0, since otherwise there is a finite probability of any site performing an event.

262

https://spparks.github.io

The none style deletes any rKMC sweeping algorithm previously defined. This may be useful for transitioning
from a rKMC solver in one run to a KMC solver in a subsequent run.

Restrictions:

This command can only be used as part of on-lattice applications as specified by the app_style command.

Not all lattice styles and applications support the color and color/strict styles. Not all applications support the
mask option.

Related commands:

app_style, solve_style, sector

Default:

The option defaults are mask = no.

263

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

temperature command

Syntax:

temperature T

T = value of temperature for the Monte Carlo simulation (energy units)•

Examples:

temperature 2.0

Description:

This command sets the temperature as used in various applications. The typical usage would be as part of a
Boltzmann factor that alters the propabilities of event acceptance and rejection.

The units of the specfied temperature should be consistent with how the application defines energy. E.g. if used in
a Boltzmann factor where a kT factor scales the energy of a Hamiltonian defined by the application, then this
command is really defining kT and the specified value should have the units of energy as computed by the
Hamiltonian.

Restrictions: none

This command can only be used as part of applications that allow for a temperature to be specified. See the doc
pages for individual applications defined by the app_style command for further details.

Related commands: none

Default:

The default temperature is 0.0.

264

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

time_sinter_start command

Syntax:

time_sinter_start tss

tss = value of time to start the vacancy creation and annihilation event in Monte Carlo sintering
simulation

•

Examples:

time_sinter_start 250

Description:

This command sets the time to start the calculation of the vacancy creation and annihilation event in the sintering
application. Prior to that time the sintering simulation just entails grain growth and pore migration with virtually
no densification. The typical usage would be as part of a random initialization where the grain structure should
acquire certain size before attempting any densification stage.

Restrictions: this should be a positive value

This command can only be used as part of the sintering application. See the doc pages for the sintering application
defined by the app_style sinter command for further details.

Related commands: none

Default:

The default time to start sintering is 50.

265

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

undump command

Syntax:

undump dump-ID

dump-ID = ID of previously defined dump•

Examples:

undump mine
undump 2

Description:

Turn off a previously defined dump command so that it is no longer active. This closes the file associated with the
dump.

Restrictions: none

Related commands:

dump

Default: none

266

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

variable command

Syntax:

variable name style args ...

name = name of variable to define•
style = index or loop or world or universe or uloop or equal or atom

index args = one or more strings
loop args = N = integer size of loop
world args = one string for each partition of processors
universe args = one or more strings
uloop args = N = integer size of loop
equal args = one formula containing numbers, math operations, variable references

 numbers = 0.0, 100, -5.4, 2.8e-4, etc
 constants = PI
 keywords = time, nglobal
 math operations = (), -x, x+y, x-y, x*y, x/y, x^y,
 sqrt(x), exp(x), ln(x), log(x),
 sin(x), cos(x), tan(x), asin(x), acos(x), atan(x),
 ceil(x), floor(x), round(x)
 other variables = v_abc, v_n

•

Examples:

variable x index run1 run2 run3 run4 run5 run6 run7 run8
variable LoopVar loop $n
variable MyValue equal 5.0*exp(v_energy/(v_boltz*v_Temp))
variable beta equal v_temp/3.0
variable temp world 300.0 310.0 320.0 ${Tfinal}
variable x universe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
variable x uloop 15

Description:

This command assigns one or more strings to a variable name for evaluation later in the input script or during a
simulation.

Variables can be used in several ways in SPPARKS. A variable can be referenced elsewhere in an input script to
become part of a new input command. For variable styles that store multiple strings, the next command can be
used to increment which string is assigned to the variable. Variables of style equal can be evaluated to produce a
single numeric value which can be output directly via the print command.

In the discussion that follows, the "name" of the variable is the arbitrary string that is the 1st argument in the
variable command. This name can only contain alphanumeric characters and underscores. The "string" is one or
more of the subsequent arguments. The "string" can be simple text as in the 1st example above, it can contain
other variables as in the 2nd example, or it can be a formula as in the 3rd example. The "value" is the numeric
quantity resulting from evaluation of the string. Note that the same string can generate different values when it is
evaluated at different times during a simulation.

IMPORTANT NOTE: When a variable command is encountered in the input script and the variable name has
already been specified, the command is ignored. This means variables can NOT be re-defined in an input script
(with 2 exceptions, read further). This is to allow an input script to be processed multiple times without resetting

267

https://spparks.github.io

the variables; see the jump or include commands. It also means that using the command-line switch -var will
override a corresponding variable setting in the input script.

There are two exceptions to this rule. First, variables of style equal ARE redefined each time the command is
encountered. This allows them to be reset, when their formulas contain a substitution for another variable, e.g. $x.
This can be useful in a loop. This also means an equal-style variable will re-define a command-line switch -var
setting, so an index-style variable should be used for such settings instead, as in bench/in.lj.

Second, as described below, if a variable is iterated on to the end of its list of strings via the next command, it is
removed from the list of active variables, and is thus available to be re-defined in a subsequent variable command.

This section of the manual explains how occurrences of a variable name in an input script line are replaced by the
variable's string. The variable name can be referenced as $x if the name "x" is a single character, or as
${LoopVar} if the name "LoopVar" is one or more characters.

As described below, for variable styles index, loop, universe, and uloop, which string is assigned to a variable can
be incremented via the next command. When there are no more strings to assign, the variable is exhausted and a
flag is set that causes the next jump command encountered in the input script to be skipped. This enables the
construction of simple loops in the input script that are iterated over and then exited from.

For the index style, one or more strings are specified. Initially, the 1st string is assigned to the variable. Each time
a next command is used with the variable name, the next string is assigned. All processors assign the same string
to the variable.

Index style variables with a single string value can also be set by using the command-line switch -var; see this
section for details.

The loop style is identical to the index style except that the strings are the integers from 1 to N. This allows
generation of a long list of runs (e.g. 1000) without having to list N strings in the input script. Initially, the string
"1" is assigned to the variable. Each time a next command is used with the variable name, the next string ("2",
"3", etc) is assigned. All processors assign the same string to the variable.

For the world style, one or more strings are specified. There must be one string for each processor partition or
"world". See this section of the manual for information on running SPPARKS with multiple partitions via the
"-partition" command-line switch. This variable command assigns one string to each world. All processors in the
world are assigned the same string. The next command cannot be used with equal style variables, since there is
only one value per world. This style of variable is useful when you wish to run different simulations on different
partitions.

For the universe style, one or more strings are specified. There must be at least as many strings as there are
processor partitions or "worlds". See this page for information on running SPPARKS with multiple partitions via
the "-partition" command-line switch. This variable command initially assigns one string to each world. When a
next command is encountered using this variable, the first processor partition to encounter it, is assigned the next
available string. This continues until all the variable strings are consumed. Thus, this command can be used to run
50 simulations on 8 processor partitions. The simulations will be run one after the other on whatever partition
becomes available, until they are all finished. Universe style variables are incremented using the files
"tmp.spparks.variable" and "tmp.spparks.variable.lock" which you will see in your directory during such a
SPPARKS run.

The uloop style is identical to the universe style except that the strings are the integers from 1 to N. This allows
generation of long list of runs (e.g. 1000) without having to list N strings in the input script.

268

For the equal style, a single string is specified which represents a formula that will be evaluated afresh each time
the variable is used. If you want spaces in the string, enclose it in double quotes so the parser will treat it as a
single argument. For equal style variables the formula computes a scalar quantity, which becomes the value of the
variable whenever it is evaluated.

Note that equal variables can produce different values at different stages of the input script or at different times
during a run.

The next command cannot be used with equal style variables, since there is only one string.

The formula for an equal variable can contain a variety of quantities. The syntax for each kind of quantity is
simple, but multiple quantities can be nested and combined in various ways to build up formulas of arbitrary
complexity. For example, this is a valid (though strange) variable formula:

variable x equal "2.0 + v_MyTemp / pow(v_Volume,1/3)"

Specifically, an formula can contain numbers, math operations, and references to other variables.

Number 0.2, 100, 1.0e20, -15.4, etc
Constants PI
Keywords time, nglobal
Math
operations

(), -x, x+y, x-y, x*y, x/y, x^y, sqrt(x), exp(x), ln(x), log(x), sin(x), cos(x), tan(x), asin(x), acos(x),
atan(x), ceil(x), floor(x), round(x)

Other
variables v_abc, v_n

The keywords currently allowed in a formula are time and nglobal. Time is the current simulation time. Nglobal is
the number of sites in the model.

Math operations are written in the usual way, where the "x" and "y" in the examples above can be another section
of the formula. Operators are evaluated left to right and have the usual precedence: unary minus before
exponentiation ("^"), exponentiation before multiplication and division, and multiplication and division before
addition and subtraction. Parenthesis can be used to group one or more portions of a formula and enforce a
desired order of operations. Additional math operations can be specified as keywords followed by a parenthesized
argument, e.g. sqrt(v_ke). Note that ln() is the natural log; log() is the base 10 log. The ceil(), floor(), and round()
operations are those in the C math library. Ceil() is the smallest integer not less than its argument. Floor() if the
largest integer not greater than its argument. Round() is the nearest integer to its argument.

The current values of other variables can be accessed by prepending a "v_" to the variable name. This will cause
that variable to be evaluated.

IMPORTANT NOTE: If you define variables in circular manner like this:

variable a equal v_b
variable b equal v_a
print $a

then SPPARKS will run for a while when the print statement is invoked!

Another way to reference a variable in a formula is using the $x form instead of v_x. There is a subtle difference
between the two references that has to do with when the evaluation of the included variable is done.

269

Using a $x, the value of the include variable is substituted for immediately when the line is read from the input
script, just as it would be in other input script command. This could be the desired behavior if a static value is
desired. Or it could be the desired behavior for an equal-style variable if the variable command appears in a loop
(see the jump and next commands), since the substitution will be performed anew each time thru the loop as the
command is re-read. Note that if the variable formula is enclosed in double quotes, this prevents variable
substitution and thus an error will be generated when the variable formula is evaluated.

Using a v_x, the value of the included variable will not be accessed until the variable formula is evaluated. Thus
the value may change each time the evaluation is performed. This may also be desired behavior.

As an example, if the current simulation box volume is 1000.0, then these lines:

variable x equal vol
variable y equal 2*$x

will associate the equation string "2*1000.0" with variable y.

By contrast, these lines:

variable x equal vol
variable y equal 2*v_x

will associate the equation string "2*v_x" with variable y.

Thus if the variable y were evaluated periodically during a run where the box volume changed, the resulting value
would always be 2000.0 for the first case, but would change dynamically for the second case.

Restrictions:

All universe- and uloop-style variables defined in an input script must have the same number of values.

Related commands:

next, jump, include, print

Default: none

270

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

volume command

Syntax:

volume V

V = volume of system (liters)•

Examples:

volume 1.0e-10

Description:

This command sets the volume of the system for use in the app_style chemistry application.

For example, it could be the volume of a biological cell within which biochemical reactions are taking place.

Restrictions:

This command can only be used as part of the app_style chemistry application.

Related commands:

app_style chemistry

Default: none

271

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

weld_shape_ellipse command

Syntax:

weld_shape_ellipse width length

width = principal dimension of ellipse and maximum width of the melt pool along x-axis•
length = principal dimension of ellipse and maximum length of the melt pool along y-axis

Examples:

weld_shape_ellipse 100 150

Above command specifies an elliptical weld pool shape with width and length of 100 and 150 respectively.

Description:

Specify size of elliptical shaped weld pool at top surface of weld. Shape of pool at root surface (bottom) is
controlled by alpha in potts/weld.

Restrictions:

This command is only valid when used with potts/weld.

Related commands:

weld_shape_teardrop

Default: none

•

272

https://spparks.github.io

SPPARKS Website - SPPARKS Documentation - SPPARKS Commands

weld_shape_teardrop command

Syntax:

weld_shape_teardrop width w case i

width w = keyword/value pair; w is pool width measured along y-axis•

case i = keyword/value pair; i takes on allowable values of I or II or III designating one of the following 3
teardrop shapes

•

Examples:

weld_shape_teardrop width 100.0 case I

weld_shape_teardrop width 100.0 case II

weld_shape_teardrop width 100.0 case III

The three examples above are depicted in the images below. These images illustrate cases I, II and III for a fixed
width of 100 sites. Because the width is fixed, each case produces a different pool length. NOTE: due to scaling
for this documentation, constant width=100 for each pool shape is not perfectly rendered in images below
although they are close.

Description:

Specify size and shape of weld pool at top surface of weld. Shape of pool at root surface (bottom) is controlled by
alpha in potts/weld. The aspect ratio length/width for cases I, II, and III are 1.4, 1.8 and 2.2 respectively. If a

273

https://spparks.github.io

specific width is desired then that is specified directly in the command and pool length is implied by the aspect
ratio. On the other hand, if a specific length desired, then the input width must be calculated by hand using the
desired length and aspect ratio.

Restrictions:

This command is only valid when used with potts/weld.

Related commands:

weld_shape_ellipse

Default: none

274...1

	Table of Contents
	
	SPPARKS Documentation
	27 Nov 2024 version
	Version info:

	1. Introduction
	1.1 What is SPPARKS
	1.2 SPPARKS features
	Pre- and post-processing:
	1.3 Open source distribution
	1.4 Acknowledgments and citations

	2. Getting Started
	2.1 What's in the SPPARKS distribution
	2.2 Making SPPARKS
	2.3 Making SPPARKS with optional packages
	2.4 Building SPPARKS as a library
	2.5 Running SPPARKS
	2.6 Command-line options
	2.7 SPPARKS screen output

	3. Commands
	3.1 SPPARKS input script
	3.2 Parsing rules
	3.3 Input script structure
	3.4 Commands listed by category
	3.5 Individual commands

	4. How-to discussions
	4.1 Running multiple simulations from one input script
	4.2 Coupling SPPARKS to other codes
	4.3 Library interface to SPPARKS

	5. Example problems
	6. Performance & scalability
	7. Additional tools
	8. Modifying & extending SPPARKS
	Application styles
	Diagnostic styles
	Input script commands
	Solve styles

	9. Errors
	9.1 Common problems
	9.2 Reporting bugs
	9.3 Error & warning messages
	Errors:
	Warnings:

	
	SPPARKS Documentation
	27 Nov 2024 version
	Version info:

	3. Commands
	3.1 SPPARKS input script
	3.2 Parsing rules
	3.3 Input script structure
	3.4 Commands listed by category
	3.5 Individual commands

	9. Errors
	9.1 Common problems
	9.2 Reporting bugs
	9.3 Error & warning messages
	Errors:
	Warnings:

	5. Example problems
	10. Future plans
	4. How-to discussions
	4.1 Running multiple simulations from one input script
	4.2 Coupling SPPARKS to other codes
	4.3 Library interface to SPPARKS

	1. Introduction
	1.1 What is SPPARKS
	1.2 SPPARKS features
	Pre- and post-processing:
	1.3 Open source distribution
	1.4 Acknowledgments and citations

	8. Modifying & extending SPPARKS
	Application styles
	Diagnostic styles
	Input script commands
	Solve styles

	6. Performance & scalability
	9. Python interface to SPPARKS
	9.1 Building SPPARKS as a shared library
	9.2 Installing the Python wrapper into Python
	9.3 Extending Python with MPI to run in parallel
	9.4 Testing the Python-SPPARKS interface
	9.5 Using SPPARKS from Python
	9.6 Example Python scripts that use SPPARKS

	2. Getting Started
	2.1 What's in the SPPARKS distribution
	2.2 Making SPPARKS
	2.3 Making SPPARKS with optional packages
	2.4 Building SPPARKS as a library
	2.5 Running SPPARKS
	2.6 Command-line options
	2.7 SPPARKS screen output

	7. Additional tools
	add_reaction command
	add_species command
	am build command
	am cartesian_layer command
	am pass command
	am path command
	am path_layer command
	am pathgen command
	app_style am/ellipsoid command
	app_style chemistry command
	app_style diffusion command
	app_style diffusion/multiphase command
	app_style erbium command
	app_style ising command
	app_style ising/single command
	app_style membrane command
	app_style phasefield/potts command
	app_style potts command
	app_style potts/neigh command
	app_style potts/neighonly command
	app_style potts/am/bezier command
	app_style potts/am/path/gen command
	app_style potts/am/weld command
	app_style potts/grad command
	app_style potts/pin command
	app_style potts/quaternion command
	app_style potts/strain command
	app_style potts/strain/pin command
	app_style potts/weld command
	app_style potts/weld/jom command
	app_style relax command
	app_style sinter command
	app_style sos command
	app_style command
	app_style test/group command
	barrier command
	boundary command
	clear command
	count command
	create_box command
	create_sites command
	deep_length command
	deep_width command
	deposition command
	diag_style array command
	diag_style cluster command
	diag_style diffusion command
	diag_style energy command
	diag_style erbium command
	diag_style propensity command
	diag_style sinter_avg_neck_area command
	diag_style sinter_density command
	diag_style sinter_free_energy_pore command
	diag_style sinter_pore_curvature command
	diag_style command
	diffusion/multiphase command
	dimension command
	dump command
	dump image command
	dump image command
	dump_modify command
	dump_one command
	echo command
	ecoord command
	ellipsoid_depth command
	event command
	event_ratios command
	event_temperatures command
	if command
	include command
	inclusion command
	jump command
	label command
	lattice command
	log command
	next command
	pair_coeff command
	pair_style lj command
	pair_style command
	pin command
	potts/am/bezier command
	print command
	processors command
	pulse command
	read_sites command
	region command
	reset_time command
	run command
	sector command
	seed command
	set command
	shell command
	app_style command
	app_style command
	solve_style command
	app_style command
	stats command
	sweep command
	temperature command
	time_sinter_start command
	undump command
	variable command
	volume command
	weld_shape_ellipse command
	weld_shape_teardrop command

